Skip to main content

Advertisement

Log in

TAK1 activates AMPK-dependent cell death pathway in hydrogen peroxide-treated cardiomyocytes, inhibited by heat shock protein-70

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this current study is to investigate the potential role of AMP-activated protein kinase (AMPK) in hydrogen peroxide (H2O2)-induced cardiomyocyte death, and focused on the signaling mechanisms of AMPK activation by H2O2. We observed a significant AMPK activation in H2O2-treated cardiomyocytes (both primary cells and H9c2 line). Inhibition of AMPK by its inhibitor or RNAi-reduced H2O2-induced cardiomyocyte death. We here proposed that transforming growth factor-β-activating kinase 1 (TAK1) might be the upstream kinase for AMPK activation by H2O2. H2O2-induced TAK1 activation, which recruited and activated AMPK. TAK1 inhibitor significantly suppressed H2O2-induced AMPK activation and following cardiomyocyte death, while over-expression of TAK1-facilitated AMPK activation and aggregated cardiomyocyte death. Importantly, heat shock protein-70 (HSP-70)-reduced H2O2-induced reactive oxygen species (ROS) accumulation, the TAK1/AMPK activation and cardiomyocyte death. In conclusion, we here suggest that TAK1 activates AMPK-dependent cell death pathway in H2O2-treated cardiomyocytes, and HSP-70 inhibits the signaling pathway by reducing ROS content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TAK1:

Transforming growth factor-β-activating kinase 1

AMPK:

AMP-activated protein kinase

HSP-70:

Heat shock protein-70 m

H2O2 :

Hydrogen peroxide

MTT:

3-[4,5-Dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium bromide

MAPK:

Mitogen-activated protein kinase

IP:

Immunoprecipitation

ROS:

Reactive oxygen species

References

  1. Gupta M, Vavasis C, Frishman WH (2004) Heat shock proteins in cardiovascular disease a new therapeutic target. Cardiol Rev 12:26–30

    Article  PubMed  Google Scholar 

  2. Borchi E, Bargelli V, Stillitano F, Giordano C, Sebastiani M, Nassi PA, d’Amati G, Cerbai E, Nediani C (2010) Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochim Biophys Acta 1802:331–338

    Article  CAS  PubMed  Google Scholar 

  3. Thu VT, Kim HK, Ha SH, Yoo JY, Park WS, Kim N, Oh GT, Han J (2010) Glutathione peroxidase 1 protects mitochondria against hypoxia/reoxygenation damage in mouse hearts. Pflugers Arch 460:55–68

    Article  CAS  PubMed  Google Scholar 

  4. Sucher R, Gehwolf P, Kaier T, Hermann M, Maglione M, Oberhuber R, Ratschiller T, Kuznetsov AV, Bosch F, Kozlov AV, Ashraf MI, Schneeberger S, Brandacher G, Ollinger R, Margreiter R, Troppmair J (2009) Intracellular signaling pathways control mitochondrial events associated with the development of ischemia/reperfusion-associated damage. Transpl Int 22:922–930

    Article  CAS  PubMed  Google Scholar 

  5. Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT (1998) Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 273:11619–11624

    Article  CAS  PubMed  Google Scholar 

  6. Di Lisa F, Kaludercic N, Paolocci N (2011) Beta-adrenoceptors, NADPH oxidase, ROS and p38 MAPK: another ‘radical’ road to heart failure? Br J Pharmacol 162:1009–1011

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanz A, Caro P, Gomez J, Barja G (2006) Testing the vicious cycle theory of mitochondrial ROS production: effects of H2O2 and cumene hydroperoxide treatment on heart mitochondria. J Bioenerg Biomembr 38:121–127

    Article  CAS  PubMed  Google Scholar 

  8. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang S, Song P, Zou MH (2012) AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci (Lond) 122:555–573

    Article  CAS  Google Scholar 

  10. Luo Z, Saha AK, Xiang X, Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26:69–76

    Article  CAS  PubMed  Google Scholar 

  11. Chen MB, Wu XY, Gu JH, Guo QT, Shen WX, Lu PH (2011) Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell Biochem Biophys 60:311–322

    Article  CAS  PubMed  Google Scholar 

  12. Chen L, Xu B, Liu L, Luo Y, Yin J, Zhou H, Chen W, Shen T, Han X, Huang S (2010) Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab Invest 90:762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A, Tamakloe T, Chu WM, Guan KL, Wan Y (2008) AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J Biol Chem 283:28897–28908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K, Vucic D, Fulda S, Vandenabeele P, Bertrand MJ (2011) cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 18:656–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Omori E, Morioka S, Matsumoto K, Ninomiya-Tsuji J (2008) TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. J Biol Chem 283:26161–26168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanco S, Santos C, Lazo PA (2007) Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol Cell Biol 27:7273–7283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lokuta A, Kirby MS, Gaa ST, Lederer WJ, Rogers TB (1994) On establishing primary cultures of neonatal rat ventricular myocytes for analysis over long periods. J Cardiovasc Electrophysiol 5:50–62

    Article  CAS  PubMed  Google Scholar 

  18. Ullrich A, Shine J, Chirgwin J, Pictet R, Tischer E, Rutter WJ, Goodman HM (1977) Rat insulin genes: construction of plasmids containing the coding sequences. Science 196:1313–1319

    Article  CAS  PubMed  Google Scholar 

  19. Ninomiya-Tsuji J, Kajino T, Ono K, Ohtomo T, Matsumoto M, Shiina M, Mihara M, Tsuchiya M, Matsumoto K (2003) A resorcylic acid lactone, 5Z–7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 278:18485–18490

    Article  CAS  PubMed  Google Scholar 

  20. Hardie DG, Ross FA, Hawley SA (2012) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19:1222–1236

    Article  CAS  PubMed  Google Scholar 

  21. Khan MI, Mohammad A, Patil G, Naqvi SA, Chauhan LK, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33:1477–1488

    Article  CAS  PubMed  Google Scholar 

  22. Guachalla LM, Rudolph KL (2010) ROS induced DNA damage and checkpoint responses: influences on aging? Cell Cycle 9:4058–4060

    Article  CAS  PubMed  Google Scholar 

  23. Ghayour-Mobarhan M, Rahsepar AA, Tavallaie S, Rahsepar S, Ferns GA (2009) The potential role of heat shock proteins in cardiovascular disease: evidence from in vitro and in vivo studies. Adv Clin Chem 48:27–72

    Article  CAS  PubMed  Google Scholar 

  24. Uchiyama T, Atsuta H, Utsugi T, Oguri M, Hasegawa A, Nakamura T, Nakai A, Nakata M, Maruyama I, Tomura H, Okajima F, Tomono S, Kawazu S, Nagai R, Kurabayashi M (2007) HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function). Atherosclerosis 190:321–329

    Article  CAS  PubMed  Google Scholar 

  25. Terry DF, McCormick M, Andersen S, Pennington J, Schoenhofen E, Palaima E, Bausero M, Ogawa K, Perls TT, Asea A (2004) Cardiovascular disease delay in centenarian offspring: role of heat shock proteins. Ann N Y Acad Sci 1019:502–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferreira MB, Carlos AG (2002) Heat-shock proteins and atherosclerosis. Allerg Immunol (Paris) 34:204–207

    Google Scholar 

  27. Pockley AG (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105:1012–1017

    Article  CAS  PubMed  Google Scholar 

  28. Leger JP, Smith FM, Currie RW (2000) Confocal microscopic localization of constitutive and heat shock-induced proteins HSP70 and HSP27 in the rat heart. Circulation 102:1703–1709

    Article  CAS  PubMed  Google Scholar 

  29. Rafiee P, Shi Y, Pritchard KA Jr, Ogawa H, Eis AL, Komorowski RA, Fitzpatrick CM, Tweddell JS, Litwin SB, Mussatto K, Jaquiss RD, Baker JE (2003) Cellular redistribution of inducible Hsp70 protein in the human and rabbit heart in response to the stress of chronic hypoxia: role of protein kinases. J Biol Chem 278:43636–43644

    Article  CAS  PubMed  Google Scholar 

  30. Chen HW, Chien CT, Yu SL, Lee YT, Chen WJ (2002) Cyclosporine A regulate oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via ROS generation, iNOS and Hsp70. Br J Pharmacol 137:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen MB, Shen WX, Yang Y, Wu XY, Gu JH, Lu PH (2011) Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell. J Cell Physiol 226:1915–1925

    Article  CAS  PubMed  Google Scholar 

  32. Chen MB, Wu XY, Gu JH, Guo QT, Shen WX, Lu PH (2010) Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell Biochem Biophys 60:311–322

    Article  Google Scholar 

  33. Rocha GZ, Dias MM, Ropelle ER, Osorio-Costa F, Rossato FA, Vercesi AE, Saad MJ, Carvalheira JB (2011) Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin Cancer Res 17:3993–4005

    Article  CAS  PubMed  Google Scholar 

  34. Sun H, Yu T, Li J (2011) Co-administration of perifosine with paclitaxel synergistically induces apoptosis in ovarian cancer cells: more than just AKT inhibition. Cancer Lett 310:118–128

    Article  CAS  PubMed  Google Scholar 

  35. Zhang WB, Wang Z, Shu F, Jin YH, Liu HY, Wang QJ, Yang Y (2010) Activation of AMP-activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition. J Biol Chem 285:40461–40471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ji C, Yang B, Yang YL, He SH, Miao DS, He L, Bi ZG (2010) Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene 29:6557–6568

    Article  CAS  PubMed  Google Scholar 

  37. Zheng QY, Jin FS, Yao C, Zhang T, Zhang GH, Ai X (2012) Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem Biophys Res Commun 419:741–747

    Article  CAS  PubMed  Google Scholar 

  38. Hwang JT, Ha J, Park IJ, Lee SK, Baik HW, Kim YM, Park OJ (2007) Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett 247:115–121

    Article  CAS  PubMed  Google Scholar 

  39. Lee YK, Hwang JT, Kwon DY, Surh YJ, Park OJ (2010) Induction of apoptosis by quercetin is mediated through AMPK alpha1/ASK1/p38 pathway. Cancer Lett 292:228–236

    Article  CAS  PubMed  Google Scholar 

  40. Kang MR, Park SK, Lee CW, Cho IJ, Jo YN, Yang JW, Kim JA, Yun J, Lee KH, Kwon HJ, Kim BW, Lee K, Kang JS, Kim HM (2012) Widdrol induces apoptosis via activation of AMP-activated protein kinase in colon cancer cells. Oncol Rep 27:1407–1412

    CAS  PubMed  Google Scholar 

  41. Jang KY, Jeong SJ, Kim SH, Jung JH, Kim JH, Koh W, Chen CY, Kim SH (2012) Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells. Cancer Lett. doi:10.1016/j.canlet.2012.01.008

    Google Scholar 

  42. Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8:65–79

    Article  CAS  PubMed  Google Scholar 

  43. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  44. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  CAS  PubMed  Google Scholar 

  45. Zheng QY, Jin FS, Yao C, Zhang T, Zhang GH, Ai X (2012) Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem Biophys Res Commun 419:714–747

    Google Scholar 

  46. Ji C, Yang YL, Yang Z, Tu Y, Cheng L, Chen B, Xia JP, Sun WL, Su ZL, He L, Bi ZG (2012) Perifosine sensitizes UVB-induced apoptosis in skin cells: new implication of skin cancer prevention? Cell Signal 24:1781–1789

    Article  CAS  PubMed  Google Scholar 

  47. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142(1504–1515):e1503

    Google Scholar 

  49. Liu YQ, Cheng X, Guo LX, Mao C, Chen YJ, Liu HX, Xiao QC, Jiang S, Yao ZJ, Zhou GB (2012) Identification of an annonaceous acetogenin mimetic, AA005, as an AMPK activator and autophagy inducer in colon cancer cells. PLoS ONE 7:e47049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  CAS  PubMed  Google Scholar 

  52. Carling D, Sanders MJ, Woods A (2008) The regulation of AMP-activated protein kinase by upstream kinases. Int J Obes (Lond) 32(Suppl 4):S55–S59

    Article  CAS  Google Scholar 

  53. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+ calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33

    Article  CAS  PubMed  Google Scholar 

  54. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107:4153–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the National Natural Science Foundation of China (Grant No: 81000787).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Lai.

Additional information

Chen Zhiyu and Shen Xiaolu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Shen, X., Shen, F. et al. TAK1 activates AMPK-dependent cell death pathway in hydrogen peroxide-treated cardiomyocytes, inhibited by heat shock protein-70. Mol Cell Biochem 377, 35–44 (2013). https://doi.org/10.1007/s11010-013-1568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1568-z

Keywords

Navigation