Skip to main content
Log in

Sextonions, Zorn matrices, and \(\mathbf {e}_{\mathbf{7} \frac{\mathbf{1}}{\mathbf{2}}}\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

By exploiting suitably constrained Zorn matrices, we present a new construction of the algebra of sextonions (over the algebraically closed field \(\mathbb {C}\)). This allows for an explicit construction, in terms of Jordan pairs, of the non-semisimple Lie algebra \(\mathbf {e}_{\mathbf{7} \frac{\mathbf{1}}{\mathbf{2}}}\), intermediate between \(\mathbf {e_7}\) and \(\mathbf {e_8}\), as well as of all Lie algebras occurring in the sextonionic row and column of the extended Freudenthal Magic Square.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. There are some variations on the definition of intermediate algebra [5, 9], based on the grading induced by an highest root. Our realization of \(Der(\mathbb S)\) and \(\mathbf {e}_{\mathbf{7} \frac{\mathbf{1}}{\mathbf{2}}}\) corresponds to the algebra denoted by \(\mathbf {{\mathfrak g}^{\prime \prime }}\) in the Introduction of [9].

  2. It is once again worth stressing that in the present investigation, as well as in the previous papers [50, 51], we only consider complex forms of the Lie algebras.

  3. This representation also characterizes \(\mathbf {a}_{1}\) as the smallest Lie group “of type \(E_{7}\)” [56], and it pertains to the so-called \(T^{3}\) model of \(N=2\), \(D=4\) supergravity.

  4. We would like to recall that the proof of the Jacobi identity given in [51] strongly relies on identities deriving from the Jordan Pair axioms [57].

References

  1. Deligne, P.: La série exceptionnelle des groupes de Lie. C.R.A.S. 322, 321–326 (1996)

    MATH  Google Scholar 

  2. Cohen, A.M., de Man, R.: Computational evidence for Deligne’s conjecture regarding exceptional Lie groups. C.R.A.S. 322, 427–432 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Deligne, P., de Man, R.: The exceptional series of Lie groups. C.R.A.S. 323, 577–582 (1996)

    MATH  Google Scholar 

  4. Landsberg, J.M., Manivel, L.: Triality, exceptional Lie algebras, and Deligne dimension formulas. Adv. Math. 171, 59–85 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Westbury, B.W.: Sextonions and the magic square. J. Lond. Math. Soc. 73(2), 455–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kleinfeld, E.: On extensions of quaternions. Indian J. Math. 9, 443–446 (1968)

    MathSciNet  MATH  Google Scholar 

  7. Jeurissen, R.H.: The automorphism groups of octave algebras. Doctoral dissertation, University of Utrecht (1970)

  8. Racine, M.L.: On maximal subalgebras. J. Algebra 30, 155–180 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Landsberg, J.M., Manivel, L.: The sextonions and \(E_{7 \frac{1}{2}}\). Adv. Math. 201, 143–179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Landsberg, J.M., Manivel, L.: Series of Lie groups. Mich. Math. J. 52, 453–479 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mkrtchyan, R.L.: On the map of Vogel’s plane. Lett. Math. Phys. 106(1), 57–79 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Vogel, P.: The Universal Lie Algebra. Preprint (1999)

  13. Hurwitz, A.: Über die Komposition der quadratischen Formen. Math. Ann. 88, 1–25 (1923)

    Article  MATH  Google Scholar 

  14. Dickson, L.E.: On quaternions and their generalization and the history of the eight square theorem. Ann. Math. 20(3), 155–171 (1919). (second series)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schafer, R.D.: An Introduction to Non-associative Algebras. Dover, New York (1995)

    Google Scholar 

  16. Ramond, P.: Exceptional Groups and Physics. Plenary Talk delivered at the Conference Groupe 24, Paris, July 2002. arXiv:hep-th/0301050v1

  17. Toppan, F.: Exceptional structures in mathematics and physics and the role of the octonions. In: Proceedings, 5th International Workshop on Supersymmetries and Quantum Symmetries (SQS’03). arXiv:hep-th/0312023

  18. Dundarer, R., Gürsey, F.: Dyson representation Of \( SU(3)\) in terms of five boson operators. J. Math. Phys. 25, 431 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ferrara, S.: BPS black holes, supersymmetry and orbits of exceptional groups. Fortschr. Phys. 47, 159 (1999)

    Article  MathSciNet  Google Scholar 

  20. Cederwall, M., Palmkvist, J.: The Octic \(E_{8}\) invariant. J. Math. Phys. 48, 073505 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kallosh, R., Soroush, M.: Explicit action of \(E_{7(7)}\) on \(\cal{N}=8\) supergravity fields. Nucl. Phys. B 801, 25 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kallosh, R., Kugo, T.: The footprint of \(E_{7(7)}\) amplitudes of \(\cal{N}=8\) supergravity. JHEP 0901, 072 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Bianchi, M., Ferrara, S.: Enriques and octonionic magic supergravity models. JHEP 0802, 054 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Dobrev, V.K.: Invariant Differential Operators for Non-Compact Lie Groups: the \(E_{6(-14)}\) case. In: Modern mathematical physics : Proceedings (B. Dragovich and Z. Rakic Eds.), Institute of Physics, Belgrade, SFIN Ser. A: Conferences A1 (2009) 95

  25. Brink, L.: Maximal supersymmetry and exceptional groups. Mod. Phys. Lett. A 25, 2715 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., Kiefer, K.: Quantum criticality in an ising chain: experimental evidence for emergent \(E_8\) symmetry. Science 327(5962), 177 (2010)

    Article  ADS  Google Scholar 

  27. Borthwick, D., Garibaldi, S.: Did a 1-dimensional magnet detect a 248-dimensional Lie algebra? Not. Am. Math. Soc. 58(8), 1055 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Duff, M.J.: String triality, black hole entropy and Cayley’s hyperdeterminant. Phys. Rev. D 76, 025017 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Duff, M.J., Ferrara, S.: \(\mathit{E}_{7}\) and the tripartite entanglement of seven qubits. Phys. Rev. D 76, 025018 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Lévay, P.: Stringy black holes and the geometry of entanglement. Phys. Rev. D 74, 024030 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. Borsten, L., Dahanayake, D., Duff, M.J., Marrani, A., Rubens, W.: Four-qubit entanglement from string theory. Phys. Rev. Lett. 105, 100507 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. Borsten, L., Duff, M.J., Marrani, A., Rubens, W.: On the black-hole/qubit correspondence. Eur. Phys. J. Plus 126, 37 (2011)

    Article  Google Scholar 

  33. Cerchiai, B.L., Van Geemen, B.: From qubits to \( E_{7}\). J. Math. Phys. 51, 122203 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ferrara, S., Kallosh, R., Strominger, A.: \(\cal{N}\mathit{ =2}\) extremal black holes. Phys. Rev. D 52, 5412 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  35. Strominger, A.: Macroscopic entropy of \( \cal{N}\mathit{=2}\) extremal black holes. Phys. Lett. B 383, 39 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ferrara, S., Kallosh, R.: Supersymmetry and attractors. Phys. Rev. D 54, 1514 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ferrara, S., Kallosh, R.: Universality of supersymmetric attractors. Phys. Rev. D 54, 1525 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Ferrara, S., Gibbons, G.W., Kallosh, R.: Black holes and critical points in moduli space. Nucl. Phys. B 500, 75 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ferrara, S., Günaydin, M.: Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A 13, 2075 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Marrani, A.: Charge orbits and moduli spaces of black hole attractors. Lect. Not. Math. 2027, 155 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Günaydin, M., Sierra, G., Townsend, P.K.: Exceptional supergravity theories and the magic square. Phys. Lett. B 133, 72 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  42. Günaydin, M., Sierra, G., Townsend, P.K.: The geometry of \(\cal{N}\mathit{=2}\) Maxwell–Einstein supergravity and Jordan algebras. Nucl. Phys. B 242, 244 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  43. Günaydin, M., Sierra, G., Townsend, P.K.: Gauging the \(\mathit{D=5}\) Maxwell–Einstein supergravity theories: more on Jordan algebras. Nucl. Phys. B 253, 573 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  44. Günaydin, M., Sierra, G., Townsend, P.K.: More on \(D=5\) Maxwell–Einstein supergravity: symmetric space and kinks. Class. Quant. Grav. 3, 763 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Dobrev, V.K.: Exceptional Lie algebra \(E_{7(-25)}\): multiplets and invariant differential operators. J. Phys. A 42, 285203 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Devchand, C.: Oxidation of self-duality to 12 dimensions and beyond. Commun. Math. Phys. 329, 461 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Bellucci, S., Ferrara, S., Günaydin, M., Marrani, A.: Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A 21, 5043 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. Borsten, L., Duff, M.J., Ferrara, S., Marrani, A., Rubens, W.: Small orbits. Phys. Rev. D 85, 086002 (2012)

    Article  ADS  Google Scholar 

  49. Borsten, L., Duff, M.J., Ferrara, S., Marrani, A., Rubens, W.: Explicit orbit classification of reducible Jordan algebras and freudenthal triple systems. Commun. Math. Phys. 325, 17 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Truini, P.: Exceptional Lie algebras, \(\mathit{SU(3)}\) and Jordan Pairs. Pac. J. Math. 260, 227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Marrani, A., Truini, P.: Exceptional Lie algebras, \( \mathit{SU(3)}\) and Jordan Pairs, Part 2: Zorn-type representations. J. Phys. A 47, 265202 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Zorn, M.: Alternativkörper und quadratische systeme. Abh. Math. Sem. Univ. Hambg. 9, 395 (1933)

    Article  MATH  Google Scholar 

  53. McCrimmon, K.: A Taste of Jordan Algebras. Springer, Berlin (2004)

    MATH  Google Scholar 

  54. Tits, J.: Sur certaines classes d’espaces homogè nes de groupes de Lie. Mem. Acad. R. Belg. Sci. 29, fasc. 3 (1955)

  55. Freudenthal, H.: Beziehungen der \(E_{7}\) und \(E_{8}\) zur Oktavenebene V–IX. Proc. K. Ned. Akad. Wet. A 62, 447 (1959)

    MATH  Google Scholar 

  56. Brown, R.: Groups of type \(E_{7}\). J. Reine Angew. Math. 236, 79 (1969)

    MathSciNet  Google Scholar 

  57. Loos, O.: Jordan Pairs, Lect. Notes in Mathematics, Vol. 460, Springer (1975)

Download references

Acknowledgements

We would like to thank Leron Borsten and Bruce Westbury for useful correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Marrani.

A Real forms

A Real forms

We use the notations of [51]. From the treatment in [51], a real form of octonions is obtained by taking \(\alpha _0^\pm , \alpha _k^\pm \in \mathbf {R}\). The quaternionic subalgebra generated by \(\rho ^\pm , \varepsilon _1^\pm \) is obviously a split form with nilpotent \(\varepsilon _1^\pm \).

Another real form is obtained by taking complex coefficients with complex conjugation denoted by ‘\(*\)’ subject to the conditions:

$$\begin{aligned} \alpha _0^- = (\alpha _0^+)^* , \quad \alpha _1^- = -(\alpha _1^+)^* , \quad \alpha _3^- = (\alpha _2^+)^* \end{aligned}$$
(A.1)

Its quaternionic subalgebra, generated by \(1, u_7, iu_1, iu_4\), is also split with nilpotent \(u_7 + i u_k, k=1,4\). It is equivalent to the one obtained with all real coefficients, which is generated by \(1, u_1, iu_4, iu_7\) upon cyclic permutation of the indices 7, 4, 1.

Let us now restrict the Zorn matrix product [51] to the sextonions and introduce the vectors

$$\begin{aligned} E_1 = (1,0,0) \quad E_2 = (0,1,0) \quad E_3 = (0,0,1) \end{aligned}$$

We get:

$$\begin{aligned} \begin{array}{l} \left[ \begin{array}{ll} \alpha _0^+ &{} A^+ \\ A^- &{} \alpha _0^- \end{array}\right] \left[ \begin{array}{ll} \beta _0^+ &{} B^+ \\ B^- &{} \beta _0^- \end{array}\right] \\ \\ \quad =\left[ \begin{array}{ll} \alpha _0^+ \beta _0^+ - \alpha _1^+ \beta _1^- &{} (\alpha _0^+ \beta _1^+ + \beta _0^- \alpha _1^+) E_1^+ \\ (\alpha _0^- \beta _1^- + \beta _0^+ \alpha _1^-)E_1^- &{} \alpha _0^- \beta _0^- - \alpha _1^- \cdot \beta _1^+ \end{array} \right] \\ \\ \quad \quad +\left[ \begin{array}{ll} 0 &{} (\alpha _0^+ \beta _2^+ + \beta _0^- \alpha _2^+ + \alpha _3^- \beta _1^- - \alpha _1^- \beta _3^-) E_2^+ \\ (\alpha _0^- \beta _3^- + \beta _0^+ \alpha _3^- + \alpha _1^+ \beta _2^+ - \alpha _2^+ \beta _1^+)E_3^- &{} 0\end{array} \right] \end{array} \end{aligned}$$
(A.2)

The algebra generated by \(\rho ^\pm , \varepsilon _1^\pm \) is the quaternionic subalgebra. Its divisible real form is obtained by setting: \(\alpha _0^- = (\alpha _0^+)^*\) and \(\alpha _1^- = (\alpha _1^+)^*\) and it is a real linear span of \(1, u_7, u_4, u_1\).

We now show that it is impossible to have e sextonion real algebra that has divisible quaternions as a subalgebra. To this aim, we suppose \(\alpha _0^- = (\alpha _0^+)^*\) and \(\alpha _1^- = (\alpha _1^+)^*\) and take in (A.2) \(\alpha _0^+ = \beta _0^+ = \beta _1^+ = 0\) - which implies \(\alpha _0^- = \beta _0^- = \beta _1^- = 0\). The product (A.2) shows that the coefficients of \(\varepsilon _2^+\) and \(\varepsilon _3^-\) must be complex, hence each coefficient, say \(\alpha _2^+\) contains 2 real parameters a and b, and, in order to have a six-dimensional real algebra, \(\alpha _3^-\) viewed in \(\mathbf {R}_2\) must be a linear transformation T of (ab), linearity being enforced by the linearity of the algebra.

We loosely write \(\alpha _2^+ = T \alpha _3^-\). It is easy to show that \(T^2 = Id\), namely T is an involution. By playing with the coefficients in (A.2), we can easily obtain \(\alpha _2^+ = - T^2 \alpha _2^+ = - \alpha _2^+\) and similarly for \(\alpha _3^-\), a contradiction unless \(\alpha _2^+ = \alpha _3^- = 0\).

This ends our proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marrani, A., Truini, P. Sextonions, Zorn matrices, and \(\mathbf {e}_{\mathbf{7} \frac{\mathbf{1}}{\mathbf{2}}}\) . Lett Math Phys 107, 1859–1875 (2017). https://doi.org/10.1007/s11005-017-0966-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0966-7

Keywords

Mathematics Subject Classification

Navigation