Skip to main content

Advertisement

Log in

Peptides with Dual Antimicrobial-Anticancer Activity Derived from the N-terminal Region of H. pylori Ribosomal Protein L1 (RpL1)

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Whereas the traditional approaches of cancer therapy including radiotherapy, chemotherapy, and immunotherapy have failed to properly treat cancer due to the condition of the space inside the tumor with the hypoxic/necrotic regions, abnormality of blood vessels that prevent delivery of enough oxygen, nutrients, and therapeutic agents, also, and the emergence of resistance, finding a new way has still remained a challenge. Antimicrobial peptides with dual anticancer activity have received more attention as a new approach for cancer treatment. Using bacteria and their products including the bacterial peptides have shown promising results in tumor regression or inhibition. Surprisingly, the small peptides derived from N-terminus of the ribosomal proteinL1 (RpL1) of Helicobacter pylori demonstrate the strong anticancer activity including activation of caspase-3, -8 and -9-dependent pathway, inducing apoptosis, arresting the cell cycle at the G0/G1 and G2/M and inhibiting the cell proliferation. Moreover, in addition to the anticancer effects, these peptides exhibit the antibacterial, antifungal, and anti-parasitic activities through membrane disruption, pore-forming, and enhancing the membrane permeability. The present study is a comprehensive review of the anticancer activity as well as antibacterial, antifungal, and anti-parasitic activities of small peptides derived from N-terminus of the ribosomal proteinL1 (RpL1) of H. pylori as an anticancer therapeutic peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham T, Lewis RN, Hodges RS, McElhaney RN (2005) Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes. Biochemistry 44(6):2103–2112

    Article  CAS  PubMed  Google Scholar 

  • Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK (2017) Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front Pharmacol 8:828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boohaker JR, Lee MW, Vishnubhotla P, Perez JLM, Khaled AR (2012) The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19(22):3794–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68(6):394–424

    Google Scholar 

  • Bylund J, Christophe T, Boulay F, Romero A, Hellstrand K, Dahlgren C (2006) A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J Clin Investig 116(5):1457–1457

    Article  PubMed Central  Google Scholar 

  • Cancer, I. A. f. R. o (2018) Latest global cancer data: cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018

  • Chen J, Xu X-M, Underhill CB, Yang S, Wang L, Chen Y, Hong S, Creswell K, Zhang L (2005a) Tachyplesin activates the classic complement pathway to kill tumor cells. Can Res 65(11):4614–4622

    Article  CAS  Google Scholar 

  • Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005b) Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280(13):12316–12329

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51(4):1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Cho E, Lee J-K, Park E, Seo CH, Luchian T, Park Y (2018) Antitumor activity of HPA3P through RIPK3-dependent regulated necrotic cell death in colon cancer. Oncotarget 9(8):7902

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu M, Qian L, Zhu M, Yao J, Xu D, Chen M (2019) Circumferential strain rate to detect lipopolysaccharide-induced cardiac dysfunction: a speckle tracking echocardiography study. Quant Imaging Med Surg 9(2):151

    Article  PubMed  PubMed Central  Google Scholar 

  • Cong H, Mui EJ, Witola WH, Sidney J, Alexander J, Sette A, Maewal A, McLeod R (2010) Human immunome, bioinformatic analyses using HLA supermotifs and the parasite genome, binding assays, studies of human T cell responses, and immunization of HLA-A* 1101 transgenic mice including novel adjuvants provide a foundation for HLA-A03 restricted CD8+ T cell epitope based, adjuvanted vaccine protective against Toxoplasma gondii. Immunome Res 6(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong H, Mui EJ, Witola WH, Sidney J, Alexander J, Sette A, Maewal A, El Bissati K, Zhou Y, Suzuki Y (2012) Toxoplasma gondii HLA-B* 0702-restricted GRA720-28 peptide with adjuvants and a universal helper T cell epitope elicits CD8+ T cells producing interferon-γ and reduces parasite burden in HLA-B* 0702 mice. Hum Immunol 73(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Danino T, Prindle A, Hasty J, Bhatia S (2013) Measuring growth and gene expression dynamics of tumor-targeted S. typhimurium bacteria. J Vis Exp. 2013:e50540

    Google Scholar 

  • de Paulis A, Prevete N, Rossi FW, Rivellese F, Salerno F, Delfino G, Liccardo B, Avilla E, Montuori N, Mascolo M (2009) Helicobacter pylori Hp (2–20) promotes migration and proliferation of gastric epithelial cells by interacting with formyl peptide receptors in vitro and accelerates gastric mucosal healing in vivo. J Immunol 183(6):3761–3769

    Article  PubMed  Google Scholar 

  • Ehrenstein G, Lecar H (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10(1):1–34

    Article  CAS  PubMed  Google Scholar 

  • El Bissati K, Chentoufi AA, Krishack PA, Zhou Y, Woods S, Dubey JP, Vang L, Lykins J, Broderick KE, Mui E (2016) Adjuvanted multi-epitope vaccines protect HLA-A* 11: 01 transgenic mice against Toxoplasma gondii. JCI Insight 1(15):1–18

    Article  Google Scholar 

  • Fujimori M (2006) Genetically engineered bifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients. Breast Cancer 13(1):27–31

    Article  PubMed  Google Scholar 

  • Gazzinelli RT, Wysocka M, Hayashi S, Denkers EY, Hieny S, Caspar P, Trinchieri G, Sher A (1994) Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 153(6):2533–2543

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Yamada T, Kimbara K, Horner J, Newcomb M, Gupta TD, Chakrabarty A (2003) Induction of apoptosis in macrophages by Pseudomonas aeruginosa azurin: tumour-suppressor protein p53 and reactive oxygen species, but not redox activity, as critical elements in cytotoxicity. Mol Microbiol 47(2):549–559

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Yan Q, Zhao J, Wang W, Huang Y, Chen Y (2015) TAT modification of alpha-helical anticancer peptides to improve specificity and efficacy. PLoS ONE 10(9):e0138911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao W, Hu C, Huang Y, Chen Y (2019) Coadministration of kla peptide with HPRP-A1 to enhance anticancer activity. PLoS ONE 14(11):e0223738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta (BBA) 1778(2):357–375

    Article  CAS  Google Scholar 

  • Hu J, Chen C, Zhang S, Zhao X, Xu H, Zhao X, Lu JR (2011) Designed antimicrobial and antitumor peptides with high selectivity. Biomacromol 12(11):3839–3843

    Article  CAS  Google Scholar 

  • Hu C, Chen X, Huang Y, Chen Y (2018a) Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci Rep 8(1):2274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu C, Chen X, Huang Y, Chen Y (2018b) Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis 23(2):132–142

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Huang Y, Chen Y (2018c) Targeted modification of the cationic anticancer peptide HPRP-A1 with iRGD to improve specificity, penetration, and tumor-tissue accumulation. Mol Pharm 16(2):561–572

    Article  CAS  Google Scholar 

  • Huang Y (2016) Anticancer activity and mechanism of alpha-helical antimicrobial peptide. Drug Des 5:e133

    Article  Google Scholar 

  • Johnstone SA, Gelmon K, Mayer LD, Hancock RE, Bally MB (2000) In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des 15(2):151–160

    CAS  PubMed  Google Scholar 

  • Kang H-L, Lee W-K, Song J-Y, Choi S-H, Park S-G, Ryu B-D, Lee E-J, Kim J-S, Park J-U, Baik S-C (2005) Helicobacter pylori Strain 51 (Korean Isolate): Ordered Overlapping BAC Library, Combined Physical and Genetic Map, and Comparative Analysis with H. pylori Strain 26695 and Strain J99. J Microbiol Biotechnol 15(4):844–854

    CAS  Google Scholar 

  • Karpiński T (2012) New peptide (Entap) with anti-proliferative activity produced by bacteria of Enterococcus genus, Habilitation thesis. Scientific Publisher of Poznań University of Medical

  • Karpiński T, Szkaradkiewicz A, Gamian A (2013) New enterococcal anticancer peptide. In 23rd European Congress of Clinical Microbiology and Infectious Diseases. Berlin, Germany

  • Lee DG, Park Y, Kim HN, Kim HK, Kim PI, Choi BH, Hahm K-S (2002b) Antifungal mechanism of an antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Biochem Biophys Res Commun 291(4):1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Kim HN, Park Y, Kim HK, Choi BH, Choi C-H, Hahm K-S (2002a) Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta 1598(1–2):185–194

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Hahm K-S, Park Y, Kim H-Y, Lee W, Lim S-C, Seo Y-K, Choi C-H (2005) Functional and structural characteristics of anticancer peptide Pep27 analogues. Cancer Cell Int 5(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JK, Gopal R, Park S-C, Ko HS, Kim Y, Hahm K-S, Park Y (2013) A proline-hinge alters the characteristics of the amphipathic α-helical AMPs. PLoS ONE 8(7):e67597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-K, Park S-C, Hahm K-S, Park Y (2014) A helix-PXXP-helix peptide with antibacterial activity without cytotoxicity against MDRPA-infected mice. Biomaterials 35(3):1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Ni Y, Song J, Xu Z, Qiu J, Wang L, Zhu Y, Huang Y, Ji M, Chen Y (2019) Research on the effect and mechanism of antimicrobial peptides HPRP-A1/A2 work against Toxoplasma gondii infection. Parasite Immunol 41(5):e12619

    Article  PubMed  CAS  Google Scholar 

  • Maher S, McClean S (2008) Melittin exhibits necrotic cytotoxicity in gastrointestinal cells which is attenuated by cholesterol. Biochem Pharmacol 75(5):1104–1114

    Article  CAS  PubMed  Google Scholar 

  • Mai X, Huang J, Tan J, Huang Y, Chen Y (2015) Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. J Pept Sci 21(7):561–568

    Article  PubMed  CAS  Google Scholar 

  • Marqus S, Pirogova E, Piva TJ (2017) Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 24(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto Y, Miwa S, Zhang Y, Zhao M, Yano S, Uehara F, Yamamoto M, Hiroshima Y, Toneri M, Bouvet M (2015) Intraperitoneal administration of tumor-targeting Salmonella typhimurium A1-R inhibits disseminated human ovarian cancer and extends survival in nude mice. Oncotarget 6(13):11369

    Article  PubMed  PubMed Central  Google Scholar 

  • McLeod R, Kieffer F, Sautter M, Hosten T, Pelloux H (2009) Why prevent, diagnose and treat congenital toxoplasmosis? Mem Inst Oswaldo Cruz 104(2):320–344

    Article  PubMed  Google Scholar 

  • Nauts HC, Swift WE, Coley BL (1946) The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, MD, reviewed in the light of modern research. Can Res 6(4):205–216

    CAS  Google Scholar 

  • Park Y, Hahm K-S (2005) Effects of N-and C-terminal truncation of HP (2–20) from Helicobacter pylori ribosomal protein L1 (RPL1) on its anti-microbial activity. Biotechnol Lett 27(3):193–199

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Lee DG, Kim HN, Kim HK, Woo E-R, Choi C-H, Hahm K-S (2002) Importance of the length of the N-and C-terminal regions of Helicobacter pylori ribosomal protein L1 (RPL1) on its antimicrobial activity. Biotechnol Lett 24(14):1209–1215

    Article  CAS  Google Scholar 

  • Park Y, Park SC, Park HK, Shin SY, Kim Y, Hahm KS (2007) Structure-activity relationship of HP (2–20) analog peptide: enhanced antimicrobial activity by N-terminal random coil region deletion. Pept Sci 88(2):199–207

    Article  CAS  Google Scholar 

  • Park S-C, Kim M-H, Hossain MA, Shin SY, Kim Y, Stella L, Wade JD, Park Y, Hahm K-S (2008) Amphipathic α-helical peptide, HP (2–20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim Biophys Acta 1778(1):229–241

    Article  CAS  PubMed  Google Scholar 

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31(49):12416–12423

    Article  CAS  PubMed  Google Scholar 

  • Pütsep K, Normark S, Boman HG (1999b) The origin of cecropins; implications from synthetic peptides derived from ribosomal protein L1. FEBS Lett 451(3):249–252

    Article  PubMed  Google Scholar 

  • Pütsep K, Brändén C-I, Boman HG, Normark S (1999a) Antibacterial peptide from H. pylori. Nature 398(6729):671

    Article  PubMed  Google Scholar 

  • Rathinam VA, Zhao Y, Shao F (2019) Innate immunity to intracellular LPS. Nat Immunol 20(5):527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts NJ, Zhang L, Janku F, Collins A, Bai R-Y, Staedtke V, Rusk AW, Tung D, Miller M, Roix J (2014) Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med 6(249):249ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625(1–3):190–194

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1–2):55–70

    Article  CAS  PubMed  Google Scholar 

  • Sieber SA, Marahiel MA (2003) Learning from nature’s drug factories: nonribosomal synthesis of macrocyclic peptides. J Bacteriol 185(24):7036–7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29

    Article  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  • Song S, Vuai MS, Zhong M (2018) The role of bacteria in cancer therapy–enemies in the past, but allies at present. Infect Agents Cancer 13(1):9

    Article  CAS  Google Scholar 

  • Tan TG, Mui E, Cong H, Witola WH, Montpetit A, Muench SP, Sidney J, Alexander J, Sette A, Grigg ME (2010) Identification of T. gondii epitopes, adjuvants, and host genetic factors that influence protection of mice and humans. Vaccine 28(23):3977–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiemann B, Starnes CO (1994) Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther 64(3):529–564

    Article  CAS  PubMed  Google Scholar 

  • Woo E-R, Lee DG, Chang Y, Park Y, Hahm K (2002) Virus-cell fusion inhibitory activity of novel analogue peptides based on the HP (2–20) derived from N-terminus of Helicobacter pylori Ribosomal Protein L1. Protein Pept Lett 9(6):477–486

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, Majumdar D, Cunningham E, Gupta TKD, Chakrabarty AM (2002) Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. Proc Natl Acad Sci 99(22):14098–14103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zare-Bidaki M, Assar S, Hakimi H, Abdollahi SH, Nosratabadi R, Kennedy D, Arababadi MK (2016) TGF-β in toxoplasmosis: friend or foe? Cytokine 86:29–35

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Fan L, Ma L, Liu J, Zhou K, Song X, Sun M, Mo X, He C, Chen Y (2019) Helicobacter pylori ribosomal protein-A2 peptide/silk fibroin nanofibrous composites as potential wound dressing. J Biomed Nanotechnol 15(3):507–517

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Huang Y, Gao S, Cui Y, He D, Wang L, Chen Y (2013) Comparison on effect of hydrophobicity on the antibacterial and antifungal activities of α-helical antimicrobial peptides. Sci China Chem 56(9):1307–1314

    Article  CAS  Google Scholar 

  • Zhao J, Huang Y, Liu D, Chen Y (2015a) Two hits are better than one: Synergistic anticancer activity of α-helical peptides and doxorubicin/epirubicin. Oncotarget 6(3):1769

    Article  PubMed  Google Scholar 

  • Zhao J, Hao X, Liu D, Huang Y, Chen Y (2015b) In vitro characterization of the rapid cytotoxicity of anticancer peptide HPRP-A2 through membrane destruction and intracellular mechanism against gastric cancer cell lines. PLoS ONE 10(9):e0139578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J, Huang Y, Chen M, Hu C, Chen Y (2019) Functional synergy of antimicrobial peptides and chlorhexidine acetate against gram-negative/gram-positive bacteria and a fungus in vitro and in vivo. Infect Drug Resist 12:3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Performed conceptualization, investigation, and writing [AY and SS], reviewed and edited the manuscript [MK, KG, AM, AA, SMH].

Corresponding author

Correspondence to Saman Soleimanpour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubi, A., Khazaei, M., Ghazvini, K. et al. Peptides with Dual Antimicrobial-Anticancer Activity Derived from the N-terminal Region of H. pylori Ribosomal Protein L1 (RpL1). Int J Pept Res Ther 27, 1057–1067 (2021). https://doi.org/10.1007/s10989-020-10150-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10150-3

Keywords

Navigation