Skip to main content
Log in

A Convenient Approach to Prepare Topologically Segregated Bilayer Beads for One-Bead Two-Compound Combinatorial Peptide Libraries

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

One-bead one-compound (OBOC) combinatorial peptide libraries have been used to identify ligands and modulators for a wide variety of biological targets. While being very efficient with linear peptides, OBOC libraries with N-terminally blocked peptides or with unsequenceable building blocks require encoding. To fully exploit OBOC combinatorial methods with cyclic peptides and peptidomimetics, topologically segregated bilayer beads have been developed. This strategy offers the opportunity to synthesize two compounds per bead, i.e. with one compound exposed on the bead surface for screening, and the other one found within the inner layer as a tag for sequencing and compound identification. Bead segregation often involves the use of unstable derivatives or requires a series of protection–deprotection steps. In order to expedite and optimize bead segregation, the performance of various reagents has been studied. The results obtained herein show that bead segregation can be efficiently performed with commercially available reagents. Finally, in order to control outer/inner layer ratios in segregated beads, the effects of different parameters have been evaluated. We report a straightforward and efficient procedure to prepare topologically segregated bilayer beads in a wide range of controllable, predictable, and reproducible outer versus inner ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric pressure chemical ionization

B:

β-Alanine

Boc:

Tert-butyloxycarbonyl

tBu:

Tert-butyl

DBU:

8-Diazabicyclo[5.4.0]undec-7-ene

DCC:

Dicyclohexylcarbodiimide

DCM:

Dichloromethane

DIPEA:

N,N-diisopropylethylamine

DMF:

N,N-dimethylformamide

Et2O:

Diethyl ether

Fmoc:

9-Fluorenylmethyloxycarbonyl

h:

Homoserine lactone

HCTU:

2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate

HOBt:

1-Hydroxybenzotriazole

HOSu:

N-hydroxysuccinimide

MALDI-TOF:

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

MeCN:

Acetonitrile

MeOH:

Methanol

NMM:

4-Methylmorpholine

OBOC:

One-bead one-compound

OBTC :

One-bead two-compound

PyBOP:

Benzotriazol-1-yl-oxy-tris(pyrrolidino)phosphonium

TFA:

Trifluoroacetic acid

TG:

TentaGel resin

TIS:

Triisopropylsilane

References

  • Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9:963–978

    Article  PubMed  CAS  Google Scholar 

  • Alluri PG, Reddy MM, Bachhawat-Silkder K, Olivos HJ, Kodadek T (2003) Isolation of protein ligands from large peptoid libraries. J Am Chem Soc 125:13995–14004. doi:10.1021/ja036417x

    Article  PubMed  CAS  Google Scholar 

  • Alluri P, Liu B, Yu P, Xiao X, Kodadek T (2006) Isolation and characterization of coactivator-binding peptoids from a combinatorial library. Mol BioSys 2:568–579. doi:10.1039/b608924

    Article  CAS  Google Scholar 

  • Bannwarth W, Hinzen B (2006) Combinatorial chemistry: from theory to application, 2nd edn. Wiley, Weinhiem

    Book  Google Scholar 

  • Bleicher KH, Boehm HJ, Mueller K, Alanine AI (2003) A guide to drug discovery: hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2:369–378. doi:10.1038/nrd1086

    Article  PubMed  CAS  Google Scholar 

  • Borchardt RT, Jeffrey A, Siahaan TJ, Gangwar S, Pauletti GM (1997) Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv Drug Deliv Rev 27:235–256. doi:10.1016/S0169-409X(97)00045-8

    Article  Google Scholar 

  • Burton PS, Conradi RA, Ho NF, Hilgers AR, Borchardt RT (1996) How structural features influence the biomembrane permeability of peptides. J Pharm Sci 85:1336–1340. doi:10.1021/js960067d

    Article  PubMed  CAS  Google Scholar 

  • Camperi SA, Iannucci NB, Albanesi GJ, Oggero Eberhardt M, Etcheverrigaray M, Albericio F, Messeguer A, Cascone O (2003) Monoclonal antibody purification by affinity chromatography with ligands derived from the screening of peptide combinatory libraries. Biotechnol Lett 25:1545–1548

    Article  PubMed  CAS  Google Scholar 

  • Christensen C, Bruun Schiødt C, Tækker Foged N, Meldal M (2003a) Solid phase combinatorial library of 1,3-azole containing peptides for the discovery of matrix metallo proteinase inhibitors. QSAR Comb Sci 22:754–766. doi:10.1002/qsar.200320006

    Article  CAS  Google Scholar 

  • Christensen C, Groth T, Bruun Schiødt C, Tækker Foged N, Meldal M (2003b) Automated sorting of beads from a one-bead-two-compounds combinatorial library of metalloproteinase inhibitors. QSAR Comb Sci 22:737–744. doi:10.1002/qsar.200320005

    Article  CAS  Google Scholar 

  • Farrer RA, Copeland GT, Previte MJR, Okamoto MM, Miller SJ, Fourkas JT (2002) Production, analysis, and application of spatially resolved shells in solid-phase polymer spheres. J Am Chem Soc 124:1994–2003. doi:10.1021/ja011675k

    Article  PubMed  CAS  Google Scholar 

  • Fassina G, Miertus S (2005) Combinatorial chemistry and technologies: methods and applications, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214. doi:10.1111/j.1399-3011.1990.tb00939.x

    Article  PubMed  CAS  Google Scholar 

  • Franz AH, Liu R, Song A, Lam KS, Lebrilla CB (2003) High-throughput one-bead-one-compound approach to peptide-encoded combinatorial libraries: MALDI-MS analysis of single TentaGel beads. J Comb Chem 5:125–137. doi:10.1021/cc020083a

    Article  PubMed  CAS  Google Scholar 

  • Furka A, Sebestyen F, Asgedom M, Dibo G (1991) General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res 37:487–493. doi:10.1111/j.1399-3011.1991.tb00765.x

    Article  PubMed  CAS  Google Scholar 

  • Garaud M, Pei D (2007) Substrate profiling of protein tyrosine phosphatase PTP1B by screening a combinatorial peptide library. J Am Chem Soc 129:5366–5367. doi:10.1021/ja071275i

    Article  PubMed  CAS  Google Scholar 

  • Gilon C, Halle D, Chorev M, Selinger Z, Byk G (1991) Backbone cyclization: a new method for conferring conformational constraint on peptides. Biopolymers 31:745–750. doi:10.1002/bip.360310619

    Article  PubMed  CAS  Google Scholar 

  • Gude M, Ryf J, White PD (2002) An accurate method for the quantification of Fmoc-derivatized solid phase supports. Lett Pept Sci 9:203–206. doi:10.1007/BF02538384

    CAS  Google Scholar 

  • Hancock WS, Marshall GR (1975) Cyanogen bromide as a cleavage procedure in solid phase peptide synthesis. J Am Chem Soc 97:7488–7489. doi:10.1021/ja00859a018

    Article  PubMed  CAS  Google Scholar 

  • Hoesl CE, Nefzi A, Ostresh JM, Yu Y, Houghten RA (2003) Mixture-based combinatorial libraries: from peptides and peptidomimetics to small molecule acyclic and heterocyclic compounds. Methods Enzymol 369:451–496. doi:10.1016/S0076-6879(03)69025-7

    Google Scholar 

  • Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354:84–86. doi:10.1038/354084a0

    Article  PubMed  CAS  Google Scholar 

  • Joo SH, Pei D (2008) Synthesis and screening of support-bound combinatorial peptide libraries with free C-termini: determination of the sequence specificity of PDZ domains. Biochemistry 47:3061–3072. doi:10.1021/bi7023628

    Article  PubMed  CAS  Google Scholar 

  • Joo SH, Xiao Q, Ling Y, Gopishetty B, Pei D (2006) High-throughput sequence determination of cyclic peptide library members by partial Edman degradation/mass spectrometry. J Am Chem Soc 128:13000–13009. doi:10.1021/ja063722k

    Article  PubMed  CAS  Google Scholar 

  • Kappel JC, Barany G (2003) Methionine anchoring applied to solid-phase synthesis of lysine-containing head-to-tail cyclic peptides. Lett Pept Sci 10:119–125. doi:10.1007/BF02443651

    Google Scholar 

  • Kennedy JP, Williams L, Bridges TM, Daniels RN, Weaver D, Linsley CW (2008) Application of combinatorial chemistry science on modern drug discovery. J Comb Chem 10:345–354. doi:10.1021/cc700187t

    Article  PubMed  CAS  Google Scholar 

  • Keseru GM, Makara GM (2006) Hit discovery and hit-to-lead approaches. Drug Discov Today 11:741–748. doi:10.1016/j.drudis.2006.06.016

    Article  PubMed  Google Scholar 

  • Kumaresan PR, Wang Y, Saunders M, Maeda Y, Liu R, Wang X, Lam KS (2011) Rapid discovery of death ligands with one-bead-two-compound combinatorial library methods. ACS Comb Sci 13:256–264. doi:10.1021/co100069t

    Article  Google Scholar 

  • Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84. doi:10.1038/354082a0

    Article  PubMed  CAS  Google Scholar 

  • Lam KS, Lebl M, Krchňák V (1997) “One-bead-one-compound” combinatorial library method. Chem Rev 97:411–448. doi:10.1021/cr9600114

    Article  PubMed  CAS  Google Scholar 

  • Lam KS, Lehman AL, Song A, Doan N, Enstrom AM, Maxwell J, Liu R (2003a) Synthesis and screening of “one-bead one-compound” combinatorial peptide libraries. In: Morales GA and Bunin BA (eds) Methods enzymol, vol 369. Academic Press, New York, pp 298–322

  • Lam KS, Liu R, Miyamoto S, Lehman AL, Tuscano JM (2003b) Applications of one-bead one-compound combinatorial libraries and chemical microarrays in signal transduction research. Acc Chem Res 36:370–377. doi:10.1021/ar0201299

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Meyer AM, Lim HS (2010) A simple strategy for the construction of combinatorial cyclic peptoid libraries. Chem Comm (Camb) 46:8615–8617. doi:10.1039/c0cc0372g

    Article  CAS  Google Scholar 

  • Liu R, Marik J, Lam KS (2002) A novel peptide-based encoding system for “one-bead one-compound” peptidomimetic and small molecule combinatorial libraries. J Am Chem Soc 124:7678–7680. doi:10.1021/ja026421t

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Enstrom AM, Lam KS (2003) Combinatorial peptide library methods for immunobiology research. Exp Hematol 31:11–30. doi:10.1016/S0301-472X(02)01008-1

    Article  PubMed  Google Scholar 

  • Liu R, Wang X, Song A, Lam KS (2005) Development and applications of topologically segregated bilayer beads in one-bead one-compound combinatorial libraries. QSAR Comb Sci 24:1127–1140. doi:10.1002/qsar.200540010

    Article  CAS  Google Scholar 

  • Liu T, Joo SH, Voorhees JL, Brooks CL, Pei D (2009) Synthesis and screening of a cyclic peptide library: discovery of small-molecule ligands against human prolactin receptor. Bioorg Med Chem 17:1026–1033. doi:10.1016/j.bmc.2008.01.015

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Liu Y, Kao HY, Pei D (2010) Membrane permeable cyclic peptidyl inhibitors against human peptidylprolyl isomerase Pin1. J Med Chem 53:2494–2501. doi:10.1021/jm901778v

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Qian Z, Xiao Q, Pei D (2011) High-throughput screening of one-bead-one-compound libraries: identification of cyclic peptidyl inhibitors against calcineurin/NFAT interaction. ACS Comb Sci 13:536–547. doi:10.1021/co200101w

    Google Scholar 

  • Marani MM, Oliveira E, Côté S, Camperi SA, Cascone O, Albericio F (2007) Identification of protein-binding peptides by direct MALDI-TOF-MS analysis of peptide beads selected from the screening of one-bead-one peptide combinatorial libraries. Anal Biochem 370:215–222. doi:10.1016/j.ab.2007.07.032

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Ceron MC, Giudicessi SL, Marani MM, Albericio F, Cascone O, Erra-Balsells R, Camperi SA (2010) Improving sample preparation for sequencing hits from one-bead one-peptide combinatorial libraries by MALDI-TOF/TOF MS. Anal Biochem 400:295–297. doi:10.1016/j.ab.2010.01.029

    Article  PubMed  Google Scholar 

  • Martínez-Ceron MC, Marani MM, Taulés M, Etcheverrigaray M, Albericio F, Cascone O, Camperi SA (2011) Affinity chromatography based on a combinatorial strategy for rErythropoietin purification. ACS Comb Sci 13:251–258. doi:10.1021/co1000663

    Article  PubMed  Google Scholar 

  • Masforrol Y, Gil J, González LJ, Pérez-Riverol Y, Fernández-de-Cossío J, Sánchez A, Hiram Betancourt L, Elisa Garay H, Cabrales A, Albericio F, Yang H, Zubarev RA, Besada V, Reyes Acosta O (2012) Introducing an Asp-pro linker in the synthesis of random one-bead-one-compound hexapeptide libraries compatible with ESI-MS analysis. ACS Comb Sci 14:45–149. doi:10.1021/co200159r

    Article  Google Scholar 

  • Ngoka LCM, Gross ML (1999) Multistep tandem mass spectrometry for sequencing cyclic peptides in an ion-trap mass spectrometer. J Am Soc Mass Spectrom 10:732–746. doi:10.1016/S1044-0305(99)00049-5

    Article  PubMed  CAS  Google Scholar 

  • Pastor JJ, Lingard I, Bhalay G, Bradley M (2003) Ion-extraction ladder sequencing from bead-based libraries. J Comb Chem 5:85–90. doi:10.1021/cc0200437

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Liu R, Marik J, Wang X, Takada Y, Lam KS (2006) Combinatorial chemistry identifies high-affinity peptidomimetics against α4β1 integrin for in vivo tumor imaging. Nat Chem Biol 2:351–352. doi:10.1038/nchembio798

    Article  Google Scholar 

  • Redman JE, Wilcoxen KM, Ghadiri MR (2003) Automated mass spectrometric sequence determination of cyclic peptide library members. J Comb Chem 5:33–40. doi:10.1021/cc0200639

    Article  PubMed  CAS  Google Scholar 

  • Shin DS, Kim DH, Chung WJ, Lee YS (2005) Combinatorial solid phase peptide synthesis and bioassays. J Biochem Mol Biol 38:517–525

    Article  PubMed  CAS  Google Scholar 

  • Shin DS, Kim YG, Kim EM, Kim M, Park HY, Kim JH, Lee BS, Kim BG, Lee YS (2008) Solid-phase peptide library synthesis on HiCore resin for screening substrate specificity of Brk protein tyrosine kinase. J Comb Chem 10:20–23. doi:10.1021/cc7001217

    Article  PubMed  CAS  Google Scholar 

  • Simpson LS, Kodadek T (2012) A cleavable scaffold strategy for the synthesis of one-bead one-compound cyclic peptoid libraries that can be sequenced by tandem mass spectrometry. Tet Lett 53:2341–2344. doi:10.1016/j.tetlet.2012.02.112

    Article  CAS  Google Scholar 

  • Song A, Zhang J, Lebrilla CB, Lam KS (2003) A novel and rapid encoding method based on mass spectrometry for one-bead one-compound small molecule combinatorial libraries. J Am Chem Soc 125:6180–6188. doi:10.1021/ja034539j

    Article  PubMed  CAS  Google Scholar 

  • Sweeney MC, Pei D (2003) An improved method for rapid sequencing of support-bound peptides by partial edman degradation and mass spectrometry. J Comb Chem 5:218–222. doi:10.1021/cc020113

    Article  PubMed  CAS  Google Scholar 

  • Sweeney MC, Wavreille AS, Park J, Butchar JP, Tridandapani S, Pei D (2005) Decoding protein–protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2 domains. Biochemistry 44:14932–14947. doi:10.1021/bi051408h

    Article  PubMed  CAS  Google Scholar 

  • Vágner J, Barany G, Lam KS, Krchňák V, Sepetov NF, Ostrem JA, Strop P, Lebl M (1996) Enzyme-mediated spatial segregation on individual polymeric support beads: application to generation and screening of encoded combinatorial libraries. Proc Natl Acad Sci USA 93:8194–8199

    Article  PubMed  Google Scholar 

  • Wang X, Zhang J, Song A, Lebrilla CB, Lam KS (2004) Encoding method for OBOC small molecule libraries using a biphasic approach for ladder-synthesis of coding tags. J Am Chem Soc 126(5740):5749. doi:10.1021/ja049322j

    Google Scholar 

  • Wang X, Peng L, Liu R, Gill SS, Lam KS (2005) Partial alloc-deprotection approach for ladder synthesis of “one-bead one-compound’’ combinatorial libraries. J Comb Chem 7:197–209. doi:10.1021cc049887b

    Article  PubMed  CAS  Google Scholar 

  • Youngquist RS, Fuentes GR, Lacey MP, Keough T (1995) Generation and screening of combinatorial peptide libraries designed for rapid sequencing by mass spectrometry. J Am Chem Soc 117:3900–3906. doi:10.1021/ja00119a002

    Article  CAS  Google Scholar 

  • Zhang Y, Zhou S, Wavreville AS, DeWille J, Pei D (2008) Cyclic peptidyl inhibitors of Grb2 and Tensin SH2 domains identified from combinatorial libraries. J Comb Chem 10:247–255. doi:10.1021/cc700185g

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Banting Research Foundation, the Fonds de recherche en Santé du Québec (FRSQ) and the Fonds Québécois de recherche en Nature et Technologie (FQRNT) for financial support. Anick Girard thanks the Fonds d’enseignement et de recherche de la Faculté de pharmacie de l’Université Laval for postgraduate Scholarships. The authors are grateful to Dr. Richard Poulin for his help in the preparation of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Biron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bédard, F., Girard, A. & Biron, É. A Convenient Approach to Prepare Topologically Segregated Bilayer Beads for One-Bead Two-Compound Combinatorial Peptide Libraries. Int J Pept Res Ther 19, 13–23 (2013). https://doi.org/10.1007/s10989-012-9316-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-012-9316-x

Keywords

Navigation