Skip to main content
Log in

Increasing the thermal diffusivity of Al–Si–Mg alloys by heat treatment

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this study is to increase the thermal diffusivity of Al–Si–Mg alloys by heat treatment and demonstrate the effect of the eutectic phase distribution on thermal conductivity of Al–Mg–Si alloys. Two types of Al–Si–Mg (Al–0.2Si–0.4Mg and Al–6.5Si–0.4Mg) alloys used in this study were prepared through atmospheric gravity casting. Solid solution treatment was performed at 535 °C for 4–10 h and then quenched in warm water of 80 °C temperature. Artificial aging of specimens was performed at 180 °C for 5 h. After aging treatment, the changes of microstructures due to heat treatment were examined by using optical microscopy. Differential scanning calorimeter analyzed phase transform during the heat treatment. Variations of thermal diffusivity according to the microstructures were investigated by using a laser flash apparatus. Precipitation of Mg2Si and Si phases increased the thermal diffusivity after aging treatment. Moreover, thermal diffusivity of the Al–6.5Si–0.4Mg alloys also increased with increasing solid solution treatment time due to spheroidization of eutectic Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu L, Kang S. The solidification process of Al–Mg–Si alloys. J Mater Sci. 1997;2:1443–7.

    Article  Google Scholar 

  2. Li C, Wu Y, Li H, Liu X. Microstructural formation in hypereutectic Al–Mg–2Si with extra Si. J Alloys Compd. 2009;477:212–6. https://doi.org/10.1016/j.jallcom.2008.10.061.

    Article  CAS  Google Scholar 

  3. Birol Y. Optimization of homogenization for a low alloyed Al–Mg–Si alloy. Mater Charact. 2013;80:69–75. https://doi.org/10.1016/j.matchar.2013.03.013.

    Article  CAS  Google Scholar 

  4. Grieb B. Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagram. Adv Mater. 1991;4:59–63.

    Google Scholar 

  5. Eskin DG, Massardier V, Merle P. Study of high-temperature precipitation in Al–Mg–Si alloys with an excess of silicon. J Mater Sci. 1999;34:811–20. https://doi.org/10.1023/A:1004585216084.

    Article  CAS  Google Scholar 

  6. Ceresara S, Russo EDI, Fiorini P, Giarda A. Effect of Si excess on the ageing behaviour of Al–Mg–2Si0.8% alloy. Mater Sci Eng. 1969;5(4):220–7.

    Article  Google Scholar 

  7. Doan LC, Nakai K, Matsuura Y, Kobayashi S, Ohmori Y. Effects of excess Mg and Si on the isothermal ageing behaviours in the Al–Mg–2Si alloys. Mater Trans. 2002;43:1371–80. https://doi.org/10.2320/matertrans.43.1371.

    Article  CAS  Google Scholar 

  8. Zhen L, Fei WD, Kang SB, Kim HW. Precipitation behaviour of Al–Mg–Si alloys with high silicon content. J Mater Sci. 1997;32:1895–902. https://doi.org/10.1023/A:1018569226499.

    Article  CAS  Google Scholar 

  9. Gupta AK, Lloyd DJ, Court SA. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng A. 2001;316:11–7. https://doi.org/10.1016/S0921-5093(01)01247-3.

    Article  Google Scholar 

  10. Davis JR. Alloying: understanding the basics. ASM Int. 2001. https://doi.org/10.1361/autb2001.

    Article  Google Scholar 

  11. Tritt TM. Thermal conductivity: theory, properties, and applications. New York: Kluwer Academic/Plenum; 2004.

    Book  Google Scholar 

  12. Kuijpers NCW, Vermolen FJ, Vuik C, Koenis PTG, Nilsen KE, van der Zwaag S. The dependence of the β-Al–Fe–Si to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements. Mater Sci Eng A. 2005;394:9–19. https://doi.org/10.1016/j.msea.2004.09.073.

    Article  CAS  Google Scholar 

  13. Rosenbaum HS, Turnbull D. Metallographic investigation of precipitation of silicon from aluminum. Acta Metall. 1959;7:664–74. https://doi.org/10.1016/0001-6160(59)90143-9.

    Article  CAS  Google Scholar 

  14. Shackelford JF. Introduction of materials science for engineers; instructor’s manual. 3rd ed. London: Publishing Company; 1992.

    Google Scholar 

  15. Tye RP. Thermal conductivity, vol. 1. London: Academic Press; 1969.

    Google Scholar 

  16. Muojekwu CA, Samarasekera IV, Brimacombe JK. Heat transfer and microstructure during the early stages of metal solidification. Metall Mater Trans B. 1995;26:361–82. https://doi.org/10.1007/BF02660979.

    Article  Google Scholar 

  17. Brandt R, Neuer G. Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature. Int J Thermophys. 2007;28:1429–46. https://doi.org/10.1007/s10765-006-0144-0.

    Article  CAS  Google Scholar 

  18. Mondolfo LF. Aluminum alloys: structure and properties. Amsterdam: Elsevier; 2013.

    Google Scholar 

  19. Cengel YA, Ghajar AJ. Heat and mass transfer. Berlin: Springer; 2011. https://doi.org/10.1017/CBO9781107415324.004.

    Book  Google Scholar 

  20. Afify N, Gaber A, Mostafa MS, Abbady G. Influence of Si concentration on the precipitation in Al–1at.%Mg alloy. J Alloys Compd. 2008;462:80–7. https://doi.org/10.1016/j.jallcom.2007.08.043.

    Article  CAS  Google Scholar 

  21. Gaber A, Afify N, Mostafa MS, Abbady G. Effect of heat treatment on the precipitation in Al–1at.%Mg–x at.% Si (x = 0.6, 1.0 and 1.6) alloys. J Alloys Compd. 2009;477:295–300. https://doi.org/10.1016/j.jallcom.2008.11.009.

    Article  CAS  Google Scholar 

  22. Lasagni F, Mingler B, Dumont M, Degischer HP. Precipitation kinetics of Si in aluminium alloys. Mater Sci Eng A. 2008;480:383–91. https://doi.org/10.1016/j.msea.2007.07.008.

    Article  CAS  Google Scholar 

  23. Kim YM, Choi SW, Hong SK. The behavior of thermal diffusivity change according to the heat treatment in Al–Si binary system. J Alloys Compd. 2016;687:54–8. https://doi.org/10.1016/j.jallcom.2016.06.080.

    Article  CAS  Google Scholar 

  24. Choi SW, Cho HS, Kumai S. Influence of precipitation on the coefficient of thermal expansion of Al–Si–Mg–Cu–(Ti) alloys. J Alloys Compd. 2016;655:6–10. https://doi.org/10.1016/j.jallcom.2015.09.207.

    Article  CAS  Google Scholar 

  25. John H. Aluminum: properties and physical metallurgy. Cleveland: ASM International; 2005.

    Google Scholar 

  26. Brown M, Gallagher P. Handbook of thermal analysis and calorimetry, volume 5 recent advances, techniques and applications. Amsterdam: Elsevier; 2008.

    Google Scholar 

  27. Starink MJ. The analysis of Al-based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev. 2004;49:191–226. https://doi.org/10.1179/095066004225010532.

    Article  CAS  Google Scholar 

  28. Choi S-W, Kim Y-M, Kim Y-C. Influence of precipitation on thermal diffusivity of Al-6Si-0.4Mg-0.9Cu-(Ti) alloys. J Alloys Compd. 2019;775:132–7. https://doi.org/10.1016/j.jallcom.2018.10.068.

    Article  CAS  Google Scholar 

  29. Peres MD, Siqueira CA, Garcia A. Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. J Alloys Compd. 2004;381:168–81. https://doi.org/10.1016/j.jallcom.2004.03.107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a research program on the development of convergent manufacturing technology for IE4-class electric motors funded by the Ministry of Trade, Industry and Energy (MTIE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-weon Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Ym., Choi, Sw., Kim, Yc. et al. Increasing the thermal diffusivity of Al–Si–Mg alloys by heat treatment. J Therm Anal Calorim 147, 2139–2146 (2022). https://doi.org/10.1007/s10973-021-10646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10646-0

Keywords

Navigation