Skip to main content
Log in

MIR imaging bundles of ordered silver halide polycrystalline fibres for thermal transmission and imaging

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, we propose a way for miniaturization of mid-infrared (MIR) fibre bundles while maintaining low crosstalk and transmission losses. Such miniaturization of fibres is important when applying MIR in thin polycrystalline AgCl0.25Br0.75 fibres with a diameter of 110 µm, made using custom-designed extrusion components. These fibres were then mechanically assembled in an optical bundle of seven hexagonally arranged fibres. Transmission of MIR from a heat source through this bundle was compared with similar bundle of seven fibres with a diameter of 300 µm. It was found that both bundles are transparent to MIR in the spectral range of 2–20 µm corresponding to temperature range from –130 to + 1150 °C. They also have low crosstalks (< 5%) and negligible bending losses. Miniaturization, expectedly, leads to higher spatial resolution in the thinner 110-µm fibre bundle (4.5 lines mm−1) compared to the thicker 300-µm fibre bundle (1.7 lines mm−1). However, optical losses along the fibre are higher in thinner bundle (0.4 dB m−1) than in the thicker bundle (0.2 dB m−1). Yet, both 110 µm and 300 µm fibre bundles are suitable for acquiring thermal images. The overall diameter of the smaller fibre bundle (400 µm) can be advantageous for endoluminal and extracorporeal thermography towards personalized diagnosis and localized thermal treatments for personalized therapy. Such miniaturization can also facilitate in situ, real-time imaging in harsh environments and additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Lozano A, Hassanipour F. Infrared imaging for breast cancer detection: an objective review of foundational studies and its proper role in breast cancer screening. Infrared Phys Technol. 2019;97:244–57.

    Article  Google Scholar 

  2. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys Technol. 2012;55(4):221–35.

    Article  CAS  Google Scholar 

  3. Bauer J, Grabarek M, Migasiewicz A, Podbielska H. Non-contact thermal imaging as potential tool for personalized diagnosis and prevention of cellulite. J Therm Anal Calorim. 2018;133(1):571–8.

    Article  CAS  Google Scholar 

  4. Vollmer M, Mollmann K-P. Infrared thermal imaging: fundamentals, research and applications. Weinheim: Wiley; 2010.

    Book  Google Scholar 

  5. Tofail SAM, Mani A, Bauer J, Silien C. In situ infrared (IR) imaging for metrology in advanced manufacturing. Adv Eng Mater. 2018;20(6):1800061.

    Article  Google Scholar 

  6. Golubnitschaja O, Costigliola V, EPMA. General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the european association for predictive, preventive and personalised medicine. EPMA J. 2012;3(14):1–53.

    Google Scholar 

  7. Gal D, Katzir A. Silver halide optical fibers for medical applications. IEEE J Quantum Electron. 1987;23(10):1827–35.

    Article  Google Scholar 

  8. Saito M, Kikuchi K. Infrared optical fiber sensors. Opt Rev. 1997;4(5):527–38.

    Article  CAS  Google Scholar 

  9. Delbeck S, Schmitz B, Nabers A, Gerwert K, Habermehl A, Lemmer U, et al. Applications of tapered flat silver halide fibers chemically modified by 12-mercaptododecanoic acid NHS ester for infrared biospectroscopy with prospects for medical diagnostics. Proc SPIE Progr Biomed Opt Imaging. 2019;10872:108720T.

    Google Scholar 

  10. Korsakova EA, Korsakov AS, Korsakov VS, Zhukova LV. IR thermographic system supplied with an ordered fibre bundle for investigation of power engineering equipment and units. Proc ASRTU Conf Altern Energy Mater Technol Dev. 2018;2018:209–16.

    Google Scholar 

  11. Capasso F. High-performance midinfrared quantum cascade lasers. Opt Eng. 2010;49:111102.

    Article  Google Scholar 

  12. Tao G, Ebendorff-Heidepriem H, Stolyarov AM, Danto S, Badding JV, Fink Y, et al. Infrared fibers. Adv. Opt. Photonics. 2015;7(2):379–458.

    Article  CAS  Google Scholar 

  13. Chenard F, Alvarez O, Gibson D, Shaw LB, Sanghera J. Mid–infrared imaging fiber bundle. In: Proceedings of SPIE. Advanced optics for defense applications: UV through LWIR II, vol. 10181; 2017. p. 101810V.

  14. Qi S, Zhang B, Zhai C, Li Y, Yang A, Yu Y, et al. High-resolution chalcogenide fiber bundles for longwave infrared imaging. Opt Express. 2017;25(21):26160–4.

    Article  Google Scholar 

  15. Matsuura Y, Naito K. Flexible hollow optical fiber bundle for infrared thermal imaging. Biomed Opt Express. 2011;2(1):65–70.

    Article  Google Scholar 

  16. Gal U, Harrington J, Ben-David M, Bledt C, Syzonenko N, Gannot I. Coherent hollow-core waveguide bundles for thermal imaging. Appl Opt. 2010;49(25):4700–9.

    Article  CAS  Google Scholar 

  17. Rave E, Nagli L, Katzir A. Ordered bundles of infrared–transmitting AgClBr fibers: optical characterization of individual fibers. Opt Lett. 2000;25(17):1237–9.

    Article  CAS  Google Scholar 

  18. Lavi Y, Millo A, Katzir A. Thin ordered bundles of infrared–transmitting silver halide fibers. Appl Phys Lett. 2005;87:241122.

    Article  Google Scholar 

  19. Korsakova EA, Zhukova LV, Korsakov AS, Shmygalev AS, Korsakov MS. Thermal imaging by means of IR-fiber bundle for medical applications. In: Proceedings of 18th international conference on laser optics, vol. 1. 2018. 2018. p. 529.

  20. Artyushenko V, Wojciechowski C, Ingram J, Kononenko V, Lobachev V, Sakharova T, et al. Specialty fibers for broad spectra of wavelength and power. Proc SPIE Opt Fibers Technol. 2005;5951:595103.

    Article  Google Scholar 

  21. Zhukova LV, Lvov AE, Korsakov AS, Salimgareev DD, Korsakov VS. Domestic developments of IR optical materials based on solid solutions of silver halogenides and monovalent thallium. Opt Spectrosc. 2018. https://doi.org/10.1134/s0030400x18120238.

    Article  Google Scholar 

  22. Lavi Y, Millo A, Katzir A. Flexible ordered bundles of infrared transmitting silver–halide fibers: design, fabrication, and optical measurements. Appl Opt. 2006;45(23):5808–14.

    Article  CAS  Google Scholar 

  23. Optical Fiber & Fiber Patch Cables. In: Thorlabs. https://www.thorlabs.com. Accessed 30 Jun 2019.

  24. Products. In: Corning. https://www.corning.com. Accessed 30 Jun 2019.

  25. Products. In: Fujikura. http://www.fujikura.com. Accessed 30 Jun 2019.

  26. Polycrystalline IR-Fibres. In: Specifications 2019. Art photonics. https://artphotonics.com/product/polycrystalline-ir-fibers. Accessed 30 Jun 2019.

  27. Optran MIR. In: CeramOptec. Fiber products. https://www.ceramoptec.com/products/fibers/optran-mir.html. Accessed 30 Jun 2019.

  28. Markham S, Mani AA, Korsakova EA, Korsakov AS, Zhukova LV, Silien C, Bauer J, Tofail SAM. Proceedings of photonics Ireland conference 2018. Ireland, vol. 1; 2018. p. 20.

  29. Zhukova LV, Primerov NV, Korsakov AS, Chazov AI. AgClx Br1−x and AgClx Bry I1 − x − y crystals for IR engineering and optical fiber cables. Inorg Mater. 2008;44:1372–7.

    Article  CAS  Google Scholar 

  30. Korsakov AS, Zhukova LV, Vrublevsky DS, Korsakova EA. Investigating the properties of infrared PCFs based on AgCl-AgBr, AgBr-TlI, AgCl-AgBr-AgI(TlI) crystals theoretically and experimentally. Opt Spectrosc. 2014. https://doi.org/10.1134/s0030400x14120121.

    Article  Google Scholar 

  31. Korsakov A, Zhukova L, Korsakova E, Zharikov E. Structure modeling and growing AgClxBr1–x, Ag1 − xTlxBr1 − xIx, and Ag1 − xTlxClyIzBr1 − y−z crystals for infrared fiber optics. J Cryst Growth. 2014;386:94–9.

    Article  CAS  Google Scholar 

  32. Multiphysics Simulation. In: ANSYS. https://www.ansys.com/products/platform/multiphysics-simulation. Accessed 30 Jun 2019.

  33. Israeli S, Katzir A. Attenuation, absorption, and scattering in silver halide crystals and fibers in the midinfrared. J Appl Phys. 2014;115:023104.

    Article  Google Scholar 

  34. Planck M. The theory of heat radiation. Masius, M. (transl.). 2nd ed. Philadelphia: P. Blakiston’s Son & Co.; 1914.

  35. Mid-Infrared (Mid-IR) Fiber Optic Solutions. In: Optoknowledge. https://optoknowledge.com/mid-ir-fiber-optics-coating.html. Accessed 30 Jun 2019.

Download references

Acknowledgements

Elena Korsakova, Aleksandr Korsakov and Liya Zhukova acknowledge Grant No. 18-73-10063 from the Russian Science Foundation for funding the fabrication of fibre bundles. These authors also acknowledge the assistance of I.A. Kashuba in ANSYS modelling. Sarah Markham, Aladin Mani, Christophe Silien, Joanna Bauer and S.A.M. Tofail acknowledge European Commission Erasmus International Credit Mobility 2015–2020 between Ural Federal University named after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia and University of Limerick, Ireland as well as Erasmus Bilateral Exchange between Wroclaw University of Science and Technology, Poland and University of Limerick, Ireland 2010–2020 for funding the work on imaging, characterization and application development using MIR bundle fibres in medicine and manufacturing. Sarah Markham and Aladin Mani acknowledge Science Foundation Ireland (SFI) Centre for Medical Devices co-funded under the European Regional Development Fund (Grant Number 13/RC/2073) for characterizing bundle fibre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Korsakova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korsakova, E., Markham, S., Mani, A. et al. MIR imaging bundles of ordered silver halide polycrystalline fibres for thermal transmission and imaging. J Therm Anal Calorim 142, 245–253 (2020). https://doi.org/10.1007/s10973-020-09811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09811-8

Keywords

Navigation