Skip to main content
Log in

Comparative performance assessment of different absorber tube geometries for parabolic trough solar collector using nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Parabolic trough collector is the most mature and widely deployed concentrated solar power technology with temperature ranging from 325 to 700 K. In this study, three different absorber tube geometries (smooth absorber tube, absorber tube with twisted tape insert and tube with longitudinal fins) of commercially available LS-2 collector are modeled and investigated using engineering equation solver. The objective of this study is to present a numerical comparative analysis of the available thermal enhancement techniques. Comprehensive energetic and exergetic performance of different tube geometry configurations using Al2O3/water as a heat transfer fluid has been compared to assess the nature of exergy destruction due to the fluid’s pressure, due to the heat transfer between sun and the receiver wall and due to the temperature difference between receiver wall and heat transfer fluid temperature. Furthermore, pure base fluid (water) along with the nanofluid is used to evaluate the system’s performance (thermal efficiency, exergetic efficiency, heat transfer coefficient, receiver temperature, pressure drop, pumping work demand and friction factor). Smooth absorber tube with pure base fluid is the reference case, while five cases (smooth tube with nanofluid, tube with pure water and fins inserted, tube with nanofluid and fins inserted, tube with pure water and twisted tape inserted, tube with nanofluid and twisted tape inserted) are investigated. Thermal efficiency of absorber tube with twisted tape insert and nanofluid is almost 72.26%, followed by tube with internal fins (72.10%), while smooth absorber tube has nearly 71.09%. Heat transfer coefficient of twisted tape inserted tube with nanofluid and longitudinal fins tube with nanofluid is greater than smooth absorber tube to almost 118.23% and 103.26%, respectively. The emphasis is also given to the pressure drop of the examined cases as it depends up on the friction factor of the absorber tubes. The use of nanofluid and twisted tape inserts leads to higher thermal enhancement, followed by the nanofluid and internal fins inserted tube. The nanoparticle concentration is also varied to investigate its effect on different performance parameters of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A ap :

Aperture area (m2)

A r :

Receiver area (m2)

C p :

Specific heat capacity (J kg−1 K−1)

D c,o :

Outer cover diameter (m)

D r,o :

Outer receiver diameter (m)

\(\dot{E}_{\text{X,Col}}\) :

Collector exergy rate (W)

G b :

Solar radiation (W m−2)

f :

Friction factor

h :

Heat transfer coefficient (W m−2 K−1)

k nf :

Thermal conductivity of nanofluid (W m−2 K−1)

T c :

Cover temperature (K)

T a :

Ambient temperature (K)

U L :

Coefficient of heat loss (W m−2 K−1)

U 0 :

Overall heat transfer coefficient

\(\dot{Q}_{\text{loss}}\) :

Heat loss (W)

\(\dot{Q}_{\text{u}}\) :

Useful heat (W)

F R :

Heat removal factor

\(\dot{m}_{\text{r}}\) :

Mass flow rate (kg s−1)

\(\dot{S}_{\text{Gen}}\) :

Entropy generation

B Num :

Bejan number

ρ nf :

Density of nanofluid (kg m−3)

\(\mu_{\text{nf}}\) :

Dynamic viscosity

σ :

Stefan–Boltzmann constant

\(\varepsilon_{\text{cv}}\) :

Cover emissivity

φ :

Volumetric fraction of nanoparticle (%)

η en :

Energy efficiency

η X :

Exergy efficiency

References

  1. Kumaresan G, Sudhakar P, Santosh R, Velraj R. Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors. Renew Sustain Energy Rev. 2017;77:1363–74.

    Article  Google Scholar 

  2. Agrafiotis C, Roeb M, Sattler C. A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sustain Energy Rev. 2015;42:254–85.

    Article  CAS  Google Scholar 

  3. SalgadoConrado L, Rodriguez-Pulido A, Calderón G. Thermal performance of parabolic trough solar collectors. Renew Sustain Energy Rev. 2017;67:1345–59.

    Article  Google Scholar 

  4. Fuqiang W, Ziming C, Jianyu T, Yuan Y, Yong S, Linhua L. Progress in concentrated solar power technology with parabolic trough collector system: a comprehensive review. Renew Sustain Energy Rev. 2017;79:1314–28.

    Article  Google Scholar 

  5. International Renewable Energy Agency. Renewable energy technologies: cost analysis series. Section 2, Volume 1: concentrating solar power; 2012.

  6. Kline SJ, Mcclintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  7. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  8. Kalogirou S. Solar energy engineering: processes and systems. Amsterdam: Elsevier; 2009.

    Google Scholar 

  9. Behar O, Khellaf A, Mohammedi K. A novel parabolic trough solar collector model-validation with experimental data and comparison to engineering equation solver (EES). Energy Convers Manag. 2015;106:268–81.

    Article  Google Scholar 

  10. Bellos E, Tzivanidis C, Antonopoulos KA, Gkinis G. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tuBE. Renew Energy. 2016;94:213–22.

    Article  CAS  Google Scholar 

  11. Bellos E, Tzivanidis C, Antonopoulos KA. A detailed working fluid investigation for solar parabolic trough collectors. Appl Therm Eng. 2017;114:374–86.

    Article  CAS  Google Scholar 

  12. Sandeep HM, Arunachala UC. Solar parabolic trough collectors: a review on heat transfer augmentation techniques. Renew Sustain Energy Rev. 2017;69:1218–31.

    Article  CAS  Google Scholar 

  13. Ren YT, Qi H, He MJ, Ruan ST, Ruan LM, Tan HP. Application of an improved firework algorithm for simultaneous estimation of temperature-dependent thermal and optical properties of molten salt. Int Commun Heat Mass Transf. 2016;77:33–42.

    Article  CAS  Google Scholar 

  14. Qiu Y, Li M-J, He Y-L, Tao W-Q. Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux. Appl Therm Eng. 2017;115:1255–65.

    Article  CAS  Google Scholar 

  15. Choi SU, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles. New York: Argonne National Lab; 1995.

    Google Scholar 

  16. Basbous N, Taqi M, Janan MA. Thermal performances analysis of a parabolic trough solar collector using different nanofluids. Renew Sustain Energy Conf (IRSEC). 2016. https://doi.org/10.1109/IRSEC.2016.7984006.

    Article  Google Scholar 

  17. Coccia G, Di Nicola G, Colla L, Fedele L, Scattolini M. Adoption of nanofluids in low-enthalpy parabolic trough solar collectors: numerical simulation of the yearly yield. Energy Convers Manag. 2016;118:306–19.

    Article  CAS  Google Scholar 

  18. Ghadirijafarbeigloo S, Zamzamian AH, Yaghoubi M. 3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape inserts. Energy Proc. 2014;49:373–80.

    Article  Google Scholar 

  19. Jaramillo OA, Mónica Borunda KM, Velazquez-Lucho M Robles. Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts. Renew Energy. 2016;93:125–41.

    Article  Google Scholar 

  20. Mwesigye A, Bellos-Ochende R, Meyer JP. Heat transfer enhancement in a parabolic trough receiver using wall detached twisted tape inserts. In: Proceedings of the ASME 2013 international mechanical engineering congress and exposition IMECE2013, November 15–21, 2013, San Diego, California, USA.

  21. Rawani A, Sharma SP, Singh KDP. Enhancement in performance of parabolic trough collector with serrated twisted-tape inserts. Int J Thermodyn. 2017;20(2):111–9.

    Article  CAS  Google Scholar 

  22. Diwan K, Soni MS. Heat transfer enhancement in absorber tube of parabolic trough concentrators using wire-coils inserts. Univ J Mech Eng. 2015;3(3):107–12.

    Article  Google Scholar 

  23. Ghasemi SE, Ranjbar AA. Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector. Appl Therm Eng. 2017;118(25):807–16.

    Article  Google Scholar 

  24. Kumar KR, Reddy KS. Thermal analysis of solar parabolic trough with porous disc receiver. Appl Energy. 2009;86:1804–12.

    Article  Google Scholar 

  25. Benabderrahmane A, Aminallah M, Laouedj S, Benazza A, Solano JP. Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids. J Therm Sci. 2016;25:410–7.

    Article  Google Scholar 

  26. Reddy KS, Satyanarayana GV. Numerical study of porous finned receiver for solar parabolic trough concentrator. Eng Appl Comput Fluid Mech. 2008;2(2):172–84.

    Google Scholar 

  27. Cheng ZD, He YL, Cui FQ. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. Int J Heat Mass Transf. 2012;55:5631–41.

    Article  Google Scholar 

  28. Bellos E, Tzivanidis C, Tsimpoukis D. Multi-criteria evaluation of parabolic trough collector with internally finned absorbers. Appl Energy. 2017;205:540–61.

    Article  Google Scholar 

  29. Muñoz J, Abánades A. Analysis of internal helically finned tubes for parabolic trough design by CFD tools. Appl Energy. 2011;88:4139–49.

    Article  Google Scholar 

  30. Dudley VE, Kolb GJ, Mahoney AR, et al. Test results: SEGS LS-2 solar collector. Sand Natl Lab. 1994;96:11437.

    Google Scholar 

  31. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16(2):359–68.

    Google Scholar 

  32. Incropera FP, Bergman TL, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. Wiley;2011.

  33. Bellos E, Tzivanidis C, Tsimpoukis D. Thermal enhancement of parabolic trough collector with internally finned absorbers. Appl Energy. 2017;205(June):540–61.

    Article  Google Scholar 

  34. Loni R, Asli-ardeh EA, Ghobadian B, Kasaeian AB, Gorjian S. Thermodynamic analysis of a solar dish receiver using different nanofluids. Energy. 2017;133:749–60.

    Article  Google Scholar 

  35. Ratlamwala TAH. Abid M. Performance analysis of solar assisted multieffect absorption cooling systems using nanofluids: A comparative analysis. Int J Energy Res; 2018. p. 1–15.

    Google Scholar 

  36. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(01):97–117.

    Article  Google Scholar 

  37. Bellos E, Daniil I, Tzivanidis C. Multiple cylindrical inserts for parabolic trough solar collector. Appl Therm Eng. 2018;143:80–9.

    Article  Google Scholar 

  38. Bellos E, Tzivanidis C, Tsimpoukis D. Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renew Sustain Energy Rev. 2018;91:358–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The appendix section is devoted to the percentage error calculation by considering smooth absorber tube with nanofluid as a reference case, while efficiencies of other two cases (twisted and internal fins with nanofluid) are compared with the reference one (Table 3).

Table 3 Comparison between the efficiencies of case 1 with case 2 and case 3
  • Case 1: Reference case (smooth absorber tube with nanofluid).

  • Case 2: Twisted tape insert absorber tube with nanofluid.

  • Case 3: Absorber tube with longitudinal internal fins with nanofluid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.S., Yan, M., Ali, H.M. et al. Comparative performance assessment of different absorber tube geometries for parabolic trough solar collector using nanofluid. J Therm Anal Calorim 142, 2227–2241 (2020). https://doi.org/10.1007/s10973-020-09590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09590-2

Keywords

Navigation