Skip to main content
Log in

Decomposition pathways of an alkaline fuel cell membrane material component via evolved gas analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The mechanism of the thermal decomposition of [NMe4][OH]·5H2O, tetramethyl ammonium hydroxide pentahydrate, was studied using DSC, TG and evolved gas analysis because of the importance of related ions in anion exchange membranes. The products of the reaction are trimethyl amine, methanol and dimethyl ether. The relative ratio of the products is determined by how much water remains in the sample as it is decomposing. Isotopic labeling experiments with D2O show that deprotonation of the tetramethyl ammonium ion by hydroxide establishes a rapid equilibrium between tetramethyl ammonium ion and the nitrogen ylide species and water that scrambles the deuterium with the proton in the methyl groups. The results of this work also suggest that tetraalkyl ammonium cations may be more stable in hydroxide conducting membranes than previously believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. R. Varcoe and R. C. T. Slade, Fuel Cells, 5 (2005) 187.

    Article  CAS  Google Scholar 

  2. J. R. Varcoe, R. C. T. Slade and E. L. H. Yee, Chem. Commun., (2006) 1428.

  3. J. Jagur-Grodzinski, Polym. Adv. Technol., 10 (2007) 785.

    Article  CAS  Google Scholar 

  4. J. Fang and P. K. Shen, J. Membr. Sci., 285 (2006) 317.

    Article  CAS  Google Scholar 

  5. J. Tanaka, J. E. Dunning and J. C. Carter, J. Org. Chem., 10 (1966) 3431.

    Article  Google Scholar 

  6. W. K. Musker, J. Am. Chem. Soc., 86 (1964) 960.

    Article  CAS  Google Scholar 

  7. W. K. Musker, J. Chem. Educ., 45 (1968) 200.

    Article  CAS  Google Scholar 

  8. F. Eigenmann, M. Maciejewski and A. Baiker, J. Therm. Anal. Cal., 83 (2006) 321.

    Article  CAS  Google Scholar 

  9. N. Kuriyama, T. Sakai, H. Miyamura, A. Kato and H. Ishikawa, Solid-state Ionics, 40 (1990) 906.

    Article  Google Scholar 

  10. S. Sato, R. Ikeda and D. Nakamura, J. Chem. Soc., Faraday Trans. 2, 82 (1986) 2053.

    Article  CAS  Google Scholar 

  11. S. Chempath, B. R. Einsla, L. R. Pratt, C. S. Macomber, J. M. Boncella, J. A. Rau and B. S. Pivovar, J. Phys. Chem. C., 112 (2008) 3179.

    Article  CAS  Google Scholar 

  12. B. R. Einsla, S. Chempath, L. R. Pratt, J. M. Boncella, J. A. Rau, C. S. Macomber and B. S. Pivovar, ECS Transactions, 11 (2007) 1173.

    Article  CAS  Google Scholar 

  13. J. March, ’Advanced Organic Chemistry’ 4th Edn., John Wiley & Sons, New York 1992, p. 388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Boncella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macomber, C.S., Boncella, J.M., Pivovar, B.S. et al. Decomposition pathways of an alkaline fuel cell membrane material component via evolved gas analysis. J Therm Anal Calorim 93, 225–229 (2008). https://doi.org/10.1007/s10973-007-8930-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8930-x

Keywords

Navigation