Skip to main content

Advertisement

Log in

Solution NMR and X-ray crystal structures of Pseudomonas syringae Pspto_3016 from protein domain family PF04237 (DUF419) adopt a “double wing” DNA binding motif

  • Published:
Journal of Structural and Functional Genomics

Abstract

The protein Pspto_3016 is a 117-residue member of the protein domain family PF04237 (DUF419), which is to date a functionally uncharacterized family of proteins. In this report, we describe the structure of Pspto_3016 from Pseudomonas syringae solved by both solution NMR and X-ray crystallography at 2.5 Å resolution. In both cases, the structure of Pspto_3016 adopts a “double wing” α/β sandwich fold similar to that of protein YjbR from Escherichia coli and to the C-terminal DNA binding domain of the MotA transcription factor (MotCF) from T4 bacteriophage, along with other uncharacterized proteins. Pspto_3016 was selected by the Protein Structure Initiative of the National Institutes of Health and the Northeast Structural Genomics Consortium (NESG ID PsR293).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Acton TB, Xiao R, Anderson S, Aramini J, Buchwald W, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang Y, Janjua H, Kornhaber G, Lau J, Lee D, Liu G, Maglaqui M, Ma L, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GVT, Tang Y, Tong S, Wang D, Wang H, Zhao L, Montelione GT (2010) Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol 493:21–60

    Article  Google Scholar 

  2. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38:W529–W533

    Article  PubMed  CAS  Google Scholar 

  3. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  PubMed  CAS  Google Scholar 

  4. Battacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consotria. Proteins 66:778–795

    Article  Google Scholar 

  5. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  6. Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  Google Scholar 

  7. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D’Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100:10181–10186

    Article  PubMed  CAS  Google Scholar 

  8. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  PubMed  CAS  Google Scholar 

  9. Dessailly BH, Nair R, Jaroszewski L, Fajardo JE, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009) PSI-2: structural genomics to cover protein domain family space. Structure 17:869–881

    Article  PubMed  CAS  Google Scholar 

  10. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  11. Finnin MS, Cicero MP, Davies C, Porter SJ, White SW, Kreuzer KN (1997) The activation domain of the MotA transcription factor from bacteriophage T4. EMBO J 16:1992–2003

    Article  PubMed  CAS  Google Scholar 

  12. Finnin MS, Hoffman DW, White SW (1994) The DNA-binding domain of the MotA transcription factor from bacteriophage T4 shows structural similarity to the TATA-binding protein. Proc Natl Acad Sci USA 91:10972–10976

    Article  PubMed  CAS  Google Scholar 

  13. Frickey T, Lupas A (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20:3702–3704

    Article  PubMed  CAS  Google Scholar 

  14. Gabanyi MJ, Adams PD, Arnold K, Bordoli L, Carter LG, Flippen-Andersen J, Gifford L, Haas J, Kouranov A, McLaughlin WA, Micallef DI, Minor W, Shah R, Schwede T, Tao YP, Westbrook JD, Zimmerman M, Berman HM (2011) The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods. J Struct Funct Genomics 12:45–54

    Article  PubMed  CAS  Google Scholar 

  15. Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    PubMed  Google Scholar 

  16. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  PubMed  CAS  Google Scholar 

  17. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–W549

    Article  PubMed  CAS  Google Scholar 

  18. Huang YJ, Moseley HN, Baran MC, Arrowsmith C, Powers R, Tejero R, Szyperski T, Montelione GT (2005) An integrated platform for automated analysis of protein NMR structures. Methods Enzymol 394:111–141

    Article  PubMed  CAS  Google Scholar 

  19. Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674

    Article  PubMed  CAS  Google Scholar 

  20. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  21. Li N, Sickmier EA, Zhang R, Joachimiak A, White SW (2002) The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain: the ‘double wing’ motif. Mol Microbiol 43:1079–1088

    Article  PubMed  CAS  Google Scholar 

  22. Li N, Zhang W, White SW, Kriwacki RW (2001) Solution structure of the transcriptional activation domain of the bacteriophage T4 protein, MotA. Biochemistry 40:4293–4302

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Montelione GT, Rost B (2007) Novel leverage of structural genomics. Nat Biotechnol 25:849–851

    Article  PubMed  CAS  Google Scholar 

  24. Moseley HN, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108

    Article  PubMed  CAS  Google Scholar 

  25. Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  26. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463

    Article  PubMed  CAS  Google Scholar 

  27. Schrödinger L (2002) The PyMOL Molecular Graphics System, Version 0.99rc6

  28. Schwieters C, Kuszewski J, Clore G (2006) Using Xplor-NIH for NMR molecular structure determination. Prog Nucl Mag Res Spectrosc 48:47–62

    Article  CAS  Google Scholar 

  29. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  PubMed  Google Scholar 

  30. Singarapu KK, Liu G, Xiao R, Bertonati C, Honig B, Montelione GT, Szyperski T (2007) NMR structure of protein yjbR from Escherichia coli reveals ‘double-wing’ DNA binding motif. Proteins 67:501–504

    Article  PubMed  CAS  Google Scholar 

  31. Terwilliger TC (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr D Biol Crystallogr 59:38–44

    Article  PubMed  Google Scholar 

  32. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank John A. Schwanof and Randy Abramowitz for their support at the X4 beam line, National Synchrotron Light Source, Brookhaven National Lab. This work was supported by grants from the National Institute of General Medical Sciences Protein Structure Initiative (PSI) of the National Institutes of Health, PSI-2 (P50 GM 074958) and PSI:Biology (U54-GM094597). NMR data collection was conducted at the Ohio Center of Excellence in Biomedicine in Structural Biology and Metabonomics at Miami University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Kennedy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldmann, E.A., Seetharaman, J., Ramelot, T.A. et al. Solution NMR and X-ray crystal structures of Pseudomonas syringae Pspto_3016 from protein domain family PF04237 (DUF419) adopt a “double wing” DNA binding motif. J Struct Funct Genomics 13, 155–162 (2012). https://doi.org/10.1007/s10969-012-9140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-012-9140-8

Keywords

Navigation