Skip to main content
Log in

Synthesis and polymeric modification of hydroxyapatite from biogenic raw material for adsorptive removal of Co2+ and Sr2+

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A gamma induced copolymerization process was applied to modify hydroxyapatite prepared from eggshell. The composite material was characterized by different physicochemical methods, and then it was used for removal of Sr2+ and Co2+ ions from aqueous solutions as a function of pH, temperature, time, interfering ions, and initial Sr2+ and Co2+ concentrations by applying batch adsorption technique. The maximum removal was obtained at pH 6, and 8 for Sr2+ and Co2+ ions respectively. Sorbents regeneration was successful with HCl eluent. Results showed good fitting to Freundlich isotherm than Langmuir. Kinetic data was well described by pseudo-second order equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Awual MR, Suzuki S, Taguchi T, Shiwaku H, Okamoto Y, Yaita T (2014) Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents. Chem Eng J 242:127–135

    CAS  Google Scholar 

  2. Sabriye Y, Sema E (2011) Adsorption characterization of strontium on PAN/zeolite composite adsorbent. J Nucl Sci Technol 1:6–12

    Google Scholar 

  3. El-Zakla TS, Yakout SM, Rizk MA, Lasheen YF, Gad H (2011) Removal of radionuclides cobalt-60 and cesium-134 from contaminated solutions by sorption using activated carbon. Adsorpt Sci Technol 29(3):331–344

    CAS  Google Scholar 

  4. Gad HMH, Elsanafini HA, Ali MMS, Lasheen YF, Abdelwahed MG (2016) Factors affecting the sorption behavior of Cs+ and Sr2+ using biosorbent material. Russ J Appl Chem 89(6):988–999

    CAS  Google Scholar 

  5. Chałupnik S, Wysocka M, Chmielewska I, Samolej K (2019) Radium removal from mine waters with the application of barium chloride and zeolite: comparison of efficiency. J Sust Min 18(4):174–181

    Google Scholar 

  6. Hashemian S, Saffari H, Ragabion S (2015) Adsorption of cobalt (II) from aqueous solutions by Fe3O4/bentonite nanocomposite. Water Air Soil Pollut 226(1):2212

    Google Scholar 

  7. Mane VS, Babu PV (2011) Studies on the adsorption of Brilliant Green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination 273(2–3):321–329

    CAS  Google Scholar 

  8. Kubota T, Fukutani S, Ohta T, Mahara Y (2013) Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon. J Radioanal Nucl Chem 296(2):981–984

    CAS  Google Scholar 

  9. Attallah MF, Youssef MA, Imam DM (2020) Preparation of novel nano composite materials from biomass waste and their sorptive characteristics for certain radionuclides. Radiochem Acta 108(2):137–149

    CAS  Google Scholar 

  10. Kim J, Sambudi NS, Cho K (2019) Removal of Sr2+ using high-surface-area hydroxyapatite synthesized by non-additive in situ precipitation. J Environ Manag 231:788–794

    CAS  Google Scholar 

  11. Ibrahim M, Labaki M, Giraudon J-M, Lamonier J-F (2019) Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J Hazard Mater 383:121139

    Google Scholar 

  12. Metwally SS, Ahmed IM, Rizk HE (2017) Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution. J Alloys Compd 709:438–444

    CAS  Google Scholar 

  13. Zhang S, Guo Z, Xu J, Niu H, Chen Z, Xu J (2011) Effect of environmental conditions on the sorption of radiocobalt from aqueous solution to treated eggshell as biosorbent. J Radioanal Nucl Chem 288(1):121–130

    CAS  Google Scholar 

  14. Naga S, El-Maghraby H, Sayed M, Saad E (2015) Highly porous scaffolds made of nanosized hydroxyapatite powder synthesized from eggshells. J Ceram Sci Technol 6:237–243

    Google Scholar 

  15. Meski S, Ziani S, Khireddine H (2010) Removal of lead ions by hydroxyapatite prepared from the egg shell. J Chem Eng Data 55(9):3923–3928

    CAS  Google Scholar 

  16. Abo-El-Enein S, Gedamy Y, Ecresh A (2017) Nitrate removal from groundwater using sodium alginate doped with nano-hydroxyapatite. Adv Mater 6(6):102

    CAS  Google Scholar 

  17. Baybaş D, Ulusoy UJ (2012) Polyacrylamide–hydroxyapatite composite: preparation, characterization and adsorptive features for uranium and thorium. J Solid State Chem 194:1–8

    Google Scholar 

  18. Ersan M, Guler UA, Acıkel U, Sarioglu M (2015) Protection E. Synthesis of hydroxyapatite/clay and hydroxyapatite/pumice composites for tetracycline removal from aqueous solutions. Process Saf Environ 96:22–32

    CAS  Google Scholar 

  19. Karadağ E, Saraydin D, Güven O (1995) Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions. Sep Sci Technol 30(20):3747–3760

    Google Scholar 

  20. Özeroğlu C, Bilgiç ÖD (2015) Use of the crosslinked copolymer functionalized with acrylic acid for the removal of strontium ions from aqueous solutions. J Radioanal Nucl Chem 305(2):551–565

    Google Scholar 

  21. Özeroğlu C, İpek N (2018) Penicillamine-cerium (IV) initiator system for synthesis of hydrogel containing lithium methacrylate ionic groups. Adv Polym Technol 37(8):3305–3314

    Google Scholar 

  22. Özeroglu C, Keceli G (2009) Kinetic and thermodynamic studies on the adsorption of U (VI) ions on densely crosslinked poly (methacrylic acid) from aqueous solutions. Radiochim Acta 97(12):709–717

    Google Scholar 

  23. Zhou L, Jia Y, Peng J, Liu Z, Al-Zaini E (2014) Competitive adsorption of uranium (VI) and thorium (IV) ions from aqueous solution using triphosphate-crosslinked magnetic chitosan resins. J Radioanal Nucl Chem 302(1):331–340

    CAS  Google Scholar 

  24. Ślósarczyk A, Piekarczyk J (1999) Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceram Int 25(6):561–565

    Google Scholar 

  25. Khandelwal H, Prakash S (2016) Synthesis and characterization of hydroxyapatite powder by eggshell. J Miner Mater Charact Eng 4(2):119–126

    CAS  Google Scholar 

  26. Waheed S, Sultan M, Jamil T, Hussain T (2015) Comparative analysis of hydroxyapatite synthesized by sol-gel, ultrasonication and microwave assisted technique. Mater Today Proc 2(10):5477–5484

    Google Scholar 

  27. Moharram MA, Allam MA (2007) Study of the interaction of poly (acrylic acid) and poly (acrylic acid-poly acrylamide) complex with bone powders and hydroxyapatite by using TGA and DSC. J Appl Polym 105(6):3220–3227

    CAS  Google Scholar 

  28. Hamidi AM, Salimi MN, Yusoff AHM (2017) Synthesis and characterization of eggshell-derived hydroxyapatite via mechanochemical method: a comparative study. In: AIP Conference Proceedings, 2017, vol 1, p 020045. AIP Publishing LLC

  29. Gergely G, Wéber F, Lukács I, Tóth AL, Horváth ZE, Mihály J, Balazsi C (2010) Preparation and characterization of hydroxyapatite from eggshell. Ceram Int 36(2):803–806

    CAS  Google Scholar 

  30. Hassan HS, El-Kamash AM, Ibrahim HA (2019) Evaluation of hydroxyapatite/poly (acrylamide-acrylic acid) for sorptive removal of strontium ions from aqueous solution. Environ Sci Pollut Res 26(25):25641–25655

    CAS  Google Scholar 

  31. Lalhriatpuia C, Tiwari D, Lee S-M (2014) Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs (I) from aqueous solutions. Appl Surf Sci 321:275–282

    Google Scholar 

  32. Marešová J, Pipíška M, Rozložník M, Horník M, Remenárová L, Augustín J (2011) Cobalt and strontium sorption by moss biosorbent: modeling of single and binary metal systems. Desalination 266(1–3):134–141

    Google Scholar 

  33. Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: implications for 90Sr mobility at contaminated nuclear sites. Appl Geochem 27(8):1482–1491

    CAS  Google Scholar 

  34. Hillel D (1998) Environmental soil physics. Academic Press, San Diego

    Google Scholar 

  35. Hanafi A (2010) Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon. J At Mol Sci 1(4):292–300

    Google Scholar 

  36. Sheha R (2007) Sorption behavior of Zn (II) ions on synthesized hydroxyapatites. J Colloid Interface Sci 310(1):18–26

    CAS  Google Scholar 

  37. Ahmadpour A, Zabihi M, Tahmasbi M, Bastami TR (2010) Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. J Hazard Mater 182(1–3):552–556

    CAS  Google Scholar 

  38. Horsfall Jnr M, Spiff AI (2005) Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron J Biotechnol 8(2):43–50

    Google Scholar 

  39. Adie GU, Osibanjo O (2009) Assessment of soil-pollution by slag from an automobile battery manufacturing plant in Nigeria. Afr J Environ Sci Technol 3(9):239–250

    CAS  Google Scholar 

  40. Tesi GO, Ipeaiyeda AR (2014) Sorption and desorption studies on toxic metals from brewery effluent using eggshell as adsorbent. Adv Nat Sci 7(2):15–24

    Google Scholar 

  41. Lagergren S (1898) Zur Theorie der Sogenannten Adsorption Geloster Stoffe, K. Sven. vetensk. akad. handl 24:1

  42. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    CAS  Google Scholar 

  43. Gamal AM, Abo Farha SA, Sallam HB, Mahmoud GEA, Ismail LFM (2010) Kinetic study and equilibrium isotherm analysis of reactive dyes adsorption onto cotton fiber. Nat Sci 8(11):95–110

    Google Scholar 

  44. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part 1. J Am Chem Soc 38:2221

    CAS  Google Scholar 

  45. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385

    CAS  Google Scholar 

  46. Dubinin MM (1960) J Phys Chem 34:959

    Google Scholar 

  47. Dawodu FA, Akpomie GK, Abuh MA (2012) Equilibrium isotherm studies on the batch sorption of Copper (II) ions from aqueous solution onto Nsu clay. Int J Sci Eng 3(12):1–7

    Google Scholar 

  48. Wankasi D, Horsfall Jnr M, Spiff AI (2005) Desorption of Pb2+ and Cu2+ from Nipa palm (Nypa fruticans Wurmb) biomass. Afr J Biotechnol 4(9):923–927

    CAS  Google Scholar 

  49. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M (2011) Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder. J Hazard Mater 190(1–3):916–921

    CAS  Google Scholar 

  50. Zein R, Suhaili R, Earnestly F, Munaf EI (2010) Removal of Pb(II), Cd (II) and Co (II) from aqueous solution using Garcinia mangostana L. fruit shell. J Hazard Mater 181(1–3):52–56

    CAS  Google Scholar 

  51. Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297(1):9–18

    CAS  Google Scholar 

  52. Hamed MM, Aly MI, Nayl AA (2016) Kinetics and thermodynamics studies of cobalt, strontium and caesium sorption on marble from aqueous solution. Chem Ecol 32(1):68–87

    CAS  Google Scholar 

  53. Kursunlu AN, Guler E, Dumrul H, Kocyigit O, Gubbuk IH (2009) Chemical modification of silica gel with synthesized new Schiff base derivatives and sorption studies of cobalt (II) and nickel (II). Appl Surf Sci 255(21):8798–8803

    CAS  Google Scholar 

  54. Rani RD, Sasidhar P (2012) Geochemical and thermodynamic aspects of sorption of strontium on kaolinite dominated clay samples at Kalpakkam. J Environ Earth Sci 65(4):1265–1274

    Google Scholar 

  55. Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J Taiwan Inst Chem Eng 43(1):125–131

    CAS  Google Scholar 

  56. Yavari R, Huang Y, Mostofizadeh A (2010) Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 285(3):703–710

    CAS  Google Scholar 

  57. Erdem E, Karapinar N, Donat R (2004) The removal of heavy metal cations by natural zeolites. Colloid Interface Sci 280(2):309–314

    CAS  Google Scholar 

  58. Basargin N, Demina E, Anikin VY, Kometiani IB (2011) Strontium (II) sorption by complexing o-hydroxy-azo-o’-hydroxy functionalized polystyrene polymer sorbents. Russ J Inorg Chem 56(12):2019–2023

    CAS  Google Scholar 

  59. Bhatnagar A, Minocha AK, Sillanpää M (2010) Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J 48(2):181–186

    CAS  Google Scholar 

  60. Tu Y-J, You C-F, Zhang Z, Duan Y, Fu J, Xu D (2016) Strontium removal in seawater by means of composite magnetic nanoparticles derived from industrial sludge. Water 8(8):357

    Google Scholar 

  61. Ngomsik AF, Bee A, Siaugue JM, Talbot D, Cabuil V, Cote G (2009) Co (II) removal by magnetic alginate beads containing Cyanex 272. J Hazard Mater 166(2–3):1043–1049

    CAS  Google Scholar 

  62. Hasan S, Iasir ARM, Ghosh TK, Sen Gupta B, Prelas MA (2019) Characterization and adsorption behavior of strontium from aqueous solutions onto Chitosan–Fuller’s earth beads. Healthcare. Multidisciplinary Digital Publishing Institute, Basel

    Google Scholar 

  63. Ajenifuja E, Ajao JA, Ajayi EOB (2017) Adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents. Appl Water Sci 7(7):3793–3801

    CAS  Google Scholar 

  64. Park Y, Shin WS, Choi S-J (2013) Chemistry N. Removal of cobalt and strontium from groundwater by sorption onto fishbone. J Radioanal Nucl Chem 295(1):789–799

    CAS  Google Scholar 

  65. Manohar DM, Noeline BF, Anirudhan TS (2006) Adsorption performance of Al-pillared bentonite clay for the removal of cobalt (II) from aqueous phase. J Appl Clay Sci 31(3–4):194–206

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Elsanafeny.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsanafeny, H.A., Abo Aly, M.M., Hasan, M.A. et al. Synthesis and polymeric modification of hydroxyapatite from biogenic raw material for adsorptive removal of Co2+ and Sr2+. J Radioanal Nucl Chem 326, 1119–1133 (2020). https://doi.org/10.1007/s10967-020-07411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07411-2

Keywords

Navigation