Skip to main content
Log in

Determination of neptunium using high resolution sequential ICP-AES

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A procedure was developed for determination of Np using HR Sequential ICP-AES. Mutual interference and background free spectral lines of Np at 295.66, 297.43, 297.49, 302.64 nm were identified. The samples of higher concentration (10–20 µg/mL) of Np had been analyzed. Analytical values of 10–20 µg/mL samples were found to be in good agreement with the expected amounts. The concentration of Np between 2 and 4 μg/mL slightly affected as compared to higher concentration. In U/Pu, Np-295.66, 297.43 nm lines were monitored which showed noticeable enhancement of their intensities. The repetitive analyses showed that the precision was better than 2% RSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cohen BL (1982) Effects of Icrp publication 30 and the 1980 Beir Report on hazard assessments of high-level waste. Health Phys 42:133–143

    Article  CAS  Google Scholar 

  2. Silva RJ, Nitsche H (1995) Actinide environmental chemistry. Radiochim Acta 70(71):377–396

    Google Scholar 

  3. Vajda Nóra, Ki Chang-Kyu (2011) Determination of transuranium isotopes (Pu, Np, Am) by radiometric techniques: a review of analytical methodology. Anal Chem 83:4688–4719

    Article  CAS  Google Scholar 

  4. Thakur P, Mulholland GP (2012) Determination of 237Np in environmental and nuclear samples: a review of the analytical method. Appl Radiat Isot 70:1747–1778

    Article  CAS  Google Scholar 

  5. Lange Robert G, Carroll Wade P (2008) Review of recent advances of radioisotope power systems. Energy Convers Manag 49:393–401

    Article  CAS  Google Scholar 

  6. Rameback H, Skalberg M (1998) Separation of neptunium, plutonium, americium and curium from uranium with di-(2-ethylhexyl)-phosphoric acid (HDEHP) for radiometric and ICP-MS analysis. J Radioanal Nucl Chem 235:229–234

    Article  Google Scholar 

  7. Rameback H, Skalberg M (1999) A separation procedure for the analysis of 90Sr, 154Eu, and the actinides 237Np, 239pu, 241Am and 244Cm. J Radioanal Nucl Chem 240:661–663

    Article  CAS  Google Scholar 

  8. Wolf SF (2006) Trace analysis of actinides in geological, environmental, and biological matrices. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of actinide and transactinide elements. Springer, Dordrecht

    Google Scholar 

  9. Kenna TC (2002) Determination of plutonium isotopes and neptunium-237 in environmental samples by inductively coupled plasma massspectrometry with total sample dissolution. J Anal At Spectrom 17:1471–1479

    Article  CAS  Google Scholar 

  10. Riegel J, Deißenberger R, Herrmann G, Köhler S, Sattelberger P, Trautmann N, Wendeler H, Ames F, Kluge H-J, Scheerer H-J, Urban F-J (1993) Resonance ionization mass spectroscopy for trace analysis of neptunium. Appl Phys B 56:275–280

    Article  Google Scholar 

  11. Fifield LK, Clacher AP, Morris K, King SJ, Cresswell RG, Day JP, Livens FR (1997) Accelerator mass spectrometry of the planetary elements. Nucl Instrum Methods Phys Res Sect B 123:400–404

    Article  CAS  Google Scholar 

  12. Soltanpour PN, Johnson GW, Workman SM, Jones JB Jr, Miller RO (1998) Advances in ICP emission and ICP mass spectrometry. Adv Agron 64:27–113

    Article  CAS  Google Scholar 

  13. Xu N, Gallimore D, Martinez A, Townsend L (2013) Determination of neptunium in plutonium materials by ICP-MS. J Radioanal Nucl Chem 297:127–132

    Article  CAS  Google Scholar 

  14. Seshagiri TK, Babu Y, Jayanth Kumar ML, Dalvi AGI, Sastry MD, Joshi BD (1984) Application of ICAP-AES for the determination of Dy, Eu, Gd, Sm and Th in uranium after chemical separation. Talanta 31:773–776

    Article  CAS  Google Scholar 

  15. Argekar AA, Kulkarni MJ, Mathur JN, Page A (2002) Chemical separation and ICP-AES determination of 22 metallic elements in U and Pu matrices using cyanex-923 extractant and studies on stripping of U and Pu. Talanta 56:591–601

    Article  CAS  Google Scholar 

  16. Malhotra RK, Satyanarayana K (1999) Estimation of trace impurities in reactor-grade uranium using ICP-AES. Talanta 50:601–608

    Article  CAS  Google Scholar 

  17. Adya VC, Thulasidas SK, Kumar Mithlesh, Purohit PJ, Mohapatra M, Seshagiri TK, Godbole SV (2011) Determination of In and Ga in plutonium oxide matrix by ICP-AES after chemical separation. Radiochim Acta 99:581–585

    Article  CAS  Google Scholar 

  18. Kumar Mithlesh, Rajeswari B, Thulasidas SK, Natarajan V (2015) Application of high-resolution ICP atomic emission spectrometer for characterization of radioactive samples. At Spectrosc 36(3):134–140

    CAS  Google Scholar 

  19. Thulasidas SK, Kumar Mithlesh, Dhawale BA, Rajeswari B, Natarajan V (2014) Determination of uranium isotopic ratio (235U/238U) using ICP-AES. At Spectrosc 35(2):147–153

    CAS  Google Scholar 

  20. Thulasidas SK, Kumar Mithlesh, Rajeswari B, Dhawale BA, Godbole SV, Natarajan V (2015) Glove box adaptation of a high-resolution inductively coupled plasma optical emission spectrometer for analysis of radioactive materials. J Instrum Sci Technol 43:125–136

    Article  CAS  Google Scholar 

  21. Holm RE, Aarkrog A, Ballestra S (1987) Determination of 237Np in large volume samples of sea water by a radiochemical procedure. J Radioanal Nucl Chem 115:5–11

    Article  CAS  Google Scholar 

  22. Krachler Michael, Alvarez-Sarandes Rafael, Souček Pavel, Carbol Paul (2014) High resolution ICP-OES analysis of neptunium-237 in samples from pyrochemical treatment of spent nuclear fuel. Microchem J 117:225–232

    Article  CAS  Google Scholar 

  23. Pant DK, Chaugule GA, Gupta KK, Kulkarni PG, Gurba PB, Janardan P, Changrani RD, Dey PK, Pathak PN, Prabhu DR, Kanekar AS, Manchanda VK (2010) Neptunium estimation in the spent fuel dissolver solution by inductively coupled plasma-atomic emission spectroscopy. J Radioanal Nucl Chem 283:513–518

    Article  CAS  Google Scholar 

  24. Prat MD, Compano R, Granados M, Miralles E (1996) Liquid chromatographic determination of gallium and indium with fluorimetric detection. J Chromatogr A 746:239–245

    Article  CAS  Google Scholar 

  25. Wang J, Liu XJ, Wang CP (2008) Thermodynamic modeling of the Al–U and Co–U systems. J Nucl Mater 374:79–86

    Article  CAS  Google Scholar 

  26. AdyaVC, Arijit Sengupta, Jayabun SK, Thulasidas SK (2015) Development of a methodology for the determination of trace metallic constituents in presence of neptunium. J Radioanal Nucl Chem. doi: 10.1007/s10967-015-4636-x

Download references

Acknowledgements

The authors are grateful to Dr.P.K.Pujari, Head, Radiochemistry Division, BARC for his keen interest, encouragement and constant support during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithlesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Adya, V.C., Rajeswari, B. et al. Determination of neptunium using high resolution sequential ICP-AES. J Radioanal Nucl Chem 313, 587–595 (2017). https://doi.org/10.1007/s10967-017-5313-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5313-z

Keywords

Navigation