Skip to main content
Log in

The role of organic acids on 226Ra transfer factor in corn (Zea mays L.)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

To study the role of citric and oxalic acids on 226Ra transfer factor (TF) from a soil with 10,000 Bq kg−1 of 226Ra activity to corn plant, a greenhouse experiment was conducted. Results revealed that the highest TF in whole plant was 0.063 and in citric acid at 100 mM concentration. It was 1.4 times of control (0.043). Maximum value of TF in shoot and root was 0.015 and 0.049 in citric acid at 10 and 100 mM concentrations, respectively. Organic acids did not extract 226Ra from this soil, while they reduced the pH of soil extracts compared to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Al-Hamraneh IF, Alkomashi N, Almasoud FI (2016) Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from northwestern Saudi Arabia. J Environ Radioact 160:1–7

    Article  Google Scholar 

  2. Baziramakenga R, Simard RR, Leroux GD (1995) Determination of organic acids in soil extracts by ion chromatography. Soil Biol Biochem 27(3):349–356

    Article  CAS  Google Scholar 

  3. Black CA, Evans DD, White JI, Ensminger LE, Clark FE (1965) Methods of soil analysis: part2. ASA, Madison

    Google Scholar 

  4. Cerne M, Smodis B, Strok M, Jacimovic R (2010) Accumulation of 226Ra, 238U and 230Th by wetland plants in avicinity of U-mill tailings at Zirovski vrh (Slovenia). J Radioanal Nucl Chem 286:323–327

    Article  CAS  Google Scholar 

  5. Chang P, Kim KW, Yoshida S, Kim SY (2005) Uranium accumulation of crop plants enhanced by citric acid. Environ Geochem Health 27:529–538

    Article  CAS  Google Scholar 

  6. Chapman HD, Pratt PF (1961) Methods of analysis for soils, plants, and water. University of California, Riverside

    Google Scholar 

  7. Chen SB, Zhu YG, Hu QH (2005) Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J Environ Radioact 82(2):223–236

    Article  CAS  Google Scholar 

  8. Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metals contaminated soil. Chemosphere 50:807–811

    Article  CAS  Google Scholar 

  9. Ding YZ, Song ZG, Feng RW (2014) Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils. Int J Environ Sci Technol 11:33–42

    Article  CAS  Google Scholar 

  10. El-Taher A, Al-Turki A (2014) Soil to plant factor of naturally occurring radionuclides for selected plants growing in Qassim, Saudi Arabia. Life Sci 11(10):965–972

    Google Scholar 

  11. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of Soil Analysis. ASA, SSSA, Madison, pp 383–409

    Google Scholar 

  12. Ghiassi-Nejad M, Beitollahi MM, Asefi M, Rezanejad F (2003) Exposure to 226Ra from consumption of vegetables in the high level natural radiation area of Ramsar-Iran. J Environ Radioact 66:215–225

    Article  CAS  Google Scholar 

  13. Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium- contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol J 32:2004–2008

    Article  CAS  Google Scholar 

  14. Jones DL (1998) Organic acids in the rhizosphere: a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  15. Karunakara N, Rao C, Ujwal P, Yashodhara I, Kumara S, Ravi PM (2013) Soil to rice transfer factor for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J Environ Radioact 118:80–92

    Article  CAS  Google Scholar 

  16. Khademi Z (2006) Organic acids behaviour in calcareous soils. Ph.D Desertation of soil science. School of agriculture and forest sciences, University of Wales, Bangor, Gwynedd

  17. Khademi Z, Jones DL, Malakouti M, Asadi JF, Ardebili M (2009) Organic acid mediated nutrient extraction efficiency in three calcareous soils. Aust J Soil Res 47:213–220

    Article  CAS  Google Scholar 

  18. Lauria DC, Ribeiro FCA, Conti CC, Loureiro FA (2009) Radium and Uranium levels in vegetables grown using different farming management systems. J Environ Radioact 100:176–183

    Article  CAS  Google Scholar 

  19. Markose PM, Bhat IS, Pillai KC (1993) Some characteristics of 226Ra transfer from soil and uranium mill tailing to plants. J Environ Radioact 21:131–142

    Article  CAS  Google Scholar 

  20. Mihalik J, Tlustos P, Szakova J (2011) The influence of citric acid on mobility of radium and metals accompanying uranium phytoextraction. Plant Soil Environ 11:526–531

    Google Scholar 

  21. Nenadovic SS, Kljajevic LM, Nenadovic MT, Omerasevic MO, Obradoviv DR, Ljesevic MA (2011) Vertical distribution of 226Ra radiological hazards indices of soil samples. J Radioanal Nucl Chem 290:479–484

    Article  CAS  Google Scholar 

  22. Nezami S, Malakouti MJ, Bahrami Samani A, Ghannadi Maragheh M (2016) Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran. J Environ Radioact 164:145–150

    Article  CAS  Google Scholar 

  23. Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. ASA, SSSA, Madison, pp 403–429

    Google Scholar 

  24. Palomo L, Classen N, Jones DL (2006) Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biol Biochem 38:683–692

    Article  CAS  Google Scholar 

  25. Pardue JH, Guo TZ (1998) Biogeochemistry of 226Ra in contaminated bottom sediments and oilfield waste pits. J Environ Radioact 39(3):239–253

    Article  CAS  Google Scholar 

  26. Pulhani VA, Dafauti S, Hegde AG, Sharma RM, Mishra UC (2005) Uptake and distribution of natural radioactivity in wheat plants from soil. J Environ Radioact 79:331–346

    Article  CAS  Google Scholar 

  27. Rhodes JD (1996) Salinity: Electrical Conductivity and total dissolved solids. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. ASA, SSSA, Madison, pp 417–435

    Google Scholar 

  28. Rumble MA, Bjugstad AJ (1986) Uranium and radium concentrations in plants growing on uranium mill tailing in south Dakota. Reclam Reveg Res 4:271–277

    CAS  Google Scholar 

  29. Sam AK, Erikson A (1995) Radium-226 uptake by vegetation grown in western Sudan. J Environ Radioact 29(1):27–38

    Article  CAS  Google Scholar 

  30. Soudek P, Petrik P, Vagner M, Tykva R, Plojhar V, Petrova S, Vanek T (2007) Botanical survey and screening of plant species which accumulate 226Ra from contaminated soil of uranium waste depot. Eur J Soil Biol 43:251–261

    Article  CAS  Google Scholar 

  31. Soudek P, Petrova S, Benesova D, Kotyza J, Vagner M, Vankova R, Vanek T (2010) Study of soil-plant transfer of 226Ra under greenhouse conditions. J Environ Radioact 101:446–450

    Article  CAS  Google Scholar 

  32. Strom L, Owen AG, Godbold DL, Jones DL (2001) Organic acid behaviour in a calcareous soil: sorption and biodegradation rates. Soil Biol Biochem 33:2125–2133

    Article  CAS  Google Scholar 

  33. Strom L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37:2046–2054

    Article  Google Scholar 

  34. Tagami K, Ushida S (2009) Radium transfer factor from soils to crops and its simple estimation method using uranium and barium concentrations. Chemosphere 77:105–114

    Article  CAS  Google Scholar 

  35. Thomas GW (1996) Soil pH and soil acidity. In: Bigham JM (ed) Methods of soil analysis: part2. SSSA, Madison, pp 457–490

    Google Scholar 

  36. Tome FV, Rodriguez PB, Lozano JC (2009) The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu condition. Chemosphere 74(2):293–300

    Article  Google Scholar 

  37. Ushida S, Tagami K (2007) Soil-to-crop transfer factor of radium in japanese agricultural fields. J Nucl Radiochem Sci 8(2):137–142

    Article  Google Scholar 

  38. Ushida S, Tagami K (2009) Transfer of radium-226 from soil to rice: a comparison of sampling area differences. J Nucl Sci Technol 46(1):49–54

    Article  Google Scholar 

  39. Vandenhove H, Van Hees M (2007) Predicting radium availability and uptake from soil properties. Chemosphere 69:664–674

    Article  CAS  Google Scholar 

  40. Vandenhove H, Olyslaegers G, Sanzharova N, Shubina O, Reed E, Shang Z, Velasco H (2009) Proposal for new best estimates of the soil- to- plant transfer factor of U, Th, Ra, Pb and Po. J Environ Radioact 100:721–732

    Article  CAS  Google Scholar 

  41. Vasconcellos LMH, Amaral ECS, Vianna ME, Penna Franca E (1987) Uptake of 226Ra and 210Pb by food crops cultivated in region of high natural radioactivity in Brazil. J Environ Radioact 5:287–302

    Article  CAS  Google Scholar 

  42. Wuana RA, Okieimen FE (2010) Phytoremediation of maize (Zea mays L.): a review. Afr J Gen Agri 6(4):275–287

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Bahram Salimi in LSC laboratory at Nuclear Science and Technology Research Institute of Iran for his help and cooperation for samples preparation and analysis. The work forms part of a thesis submitted to the University of Tarbiat Modares for the degree of Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sareh Nezami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezami, S., Malakouti, M.J., Bahrami Samani, A. et al. The role of organic acids on 226Ra transfer factor in corn (Zea mays L.). J Radioanal Nucl Chem 313, 13–18 (2017). https://doi.org/10.1007/s10967-017-5265-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5265-3

Keywords

Navigation