Skip to main content
Log in

Understanding the sorption behavior of tetra- and hexavalent plutonium on fungus Rhizopus arrhizus dead biomass

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An attempt was made to understand the sorption behaviour of Pu4+ and PuO2 2+ on Rhizopus arrhizus fungus. The sorption data were analyzed using Langmuir, Dubinin–Radushkevich, Freundlich isotherm and Tempkin isotherms, which revealed that the sorption proceeds via chemisorption through mono layer following Langmuir isotherm. the sorption kinetics were analyzed by different models revealing the predominance of pseudo 2nd order kinetics. Oxalic acid and sodium carbonate were used for effective stripping of Pu4+ and PuO2 2+, respectively. This biomass was found to be radiolytically stable and finally was applied for processing of SHLW from RR and FBR origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weber WJ, Ewing RC (2000) Plutonium immobilization and radiation effects. Science 289(5487):2051–2052

    Article  CAS  Google Scholar 

  2. Krahenbuhl MP, Slaughter DM, Wilde JL, Bess JD, Miller SC, Khokhryakov VF, Suslova KG, Vostrotin VV, Romanov SA, Menshikh ZS, Kudryavtseva TI (2002) The historical and current application of the FIB-1 model to assess organ dose from plutonium intakes in mayak workers. Health Phys 82(4):445–454

    Article  CAS  Google Scholar 

  3. Lin Y, Wai CM, Jean FM, Brauer RD (1994) Supercritical fluid extraction of thorium and uranium ions from solid and liquid materials with fluorinated.beta-diketones and tributyl phosphate. Environ Sci Technol 28(6):1190–1193

    Article  CAS  Google Scholar 

  4. Sato T (1965) Extraction of uranium (VI) and thorium from nitric acid solutions by tri-n-butyl phosphate. J Appl Chem 15(11):489–495

    Article  CAS  Google Scholar 

  5. Siddall TH (1959) Trialkyl phosphates and dialkyl alkylphosphonates in uranium and thorium extraction. Ind Eng Chem 51(1):41–44

    Article  CAS  Google Scholar 

  6. Gupta B, Malik P, Deep A (2002) Extraction of uranium, thorium and lanthanides using Cyanex-923: their separations and recovery from monazite. J Radioanal Nucl Chem 251(3):451–456

    Article  CAS  Google Scholar 

  7. Suresh A, Srinivasan TG, Rao PRV (1994) Extraction of U(VI), Pu(IV) and Th(IV) by some tri-alkyl phosphates. Solvent Extr Ion Exch 12(4):727–744

    Article  CAS  Google Scholar 

  8. Beveridge TJ, Koval SF (1981) Binding of metals to cell envelopes of Escherichia coli K-12. Appl Environ Microbiol 42(2):325–335

    CAS  Google Scholar 

  9. Beveridge TJ, Murray RGE (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127(3):1502–1518

    CAS  Google Scholar 

  10. Galun M, Keller P, Malki D, Feldstein H, Galun E, Siegel SM, Siegel BZ (1982) Removal of uranium (VI) from solution by fungal biomass and fungal wall-related biopolymers. Science 219(4582):285–286

    Article  Google Scholar 

  11. Nakajima A, Horikoshi T, Sakaguchi T (1981) Studies on the accumulation of heavy metal elements in biological systems. XVII. Selective accumulation of heavy metal ions by Chlorella regularis. Eur J Appl Microbiol Biotechnol 12(2):76–83

    Article  CAS  Google Scholar 

  12. Strandberg GW, Shumate SE II, Parrott JR Jr (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41(1):237–245

    CAS  Google Scholar 

  13. Tsezos M, Keller DM (1983) Adsorption of 226radium by biological origin absorbents. Biotechnol Bioeng 25(1):201–215

    Article  CAS  Google Scholar 

  14. Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  15. Garcia SB, Nickerson WJ (1962) Isolation, composition and structure of cell walls of filamentous and yeast like forms of Mucor rouxii. Biochim Biophys Acta 58:102–119

    Article  Google Scholar 

  16. Crist RH, Oberhauser K, Shank N, Ngkuyen M (1981) Nature of bonding between metallic ions and algae cell walls. Environ Sci Technol 15(10):1212–1217

    Article  CAS  Google Scholar 

  17. Horikoshi T, Nakajima A, Sakaguchi T (1981) Studies of the accumulation of heavy metal elements in biological systems. XIX. Accumulation of uranium by microorganisms. Eur J Appl Microbiol Biotechnol 12(2):90–96

    Article  CAS  Google Scholar 

  18. Weidemann DP, Tanner RD (1981) Modelling the rate of transfer of uranyl ions onto microbial cells. Enzyme Microb Technol 3:33–40

    Article  CAS  Google Scholar 

  19. Seth GJ, Ruggiero CE, Hersman LE, Chang-Shung Tung, Neu MP (2001) Siderophore mediated plutonium accumulation by microbacterium flavescens (JG-9). Environ Sci Technol 35(14):2942–2948

    Article  Google Scholar 

  20. Hider RC, Hall AD (1991) Clinically useful chelators of tripositive elements. Prog Med Chem 28:41–137

    Article  CAS  Google Scholar 

  21. Dhami PS, Gopalakrishnan V, Kannan R, Ramanujam A, Salvi NA, Udupa SR (1998) Biosorption of radionucleides by Rhizopus arrhizus. Biotechnol Lett 20(3):225–228

    Article  CAS  Google Scholar 

  22. Dhami PS, Kannan R, Gopalakrishnan V, Ramanujam A, Salvi NA, Udupa SR (1998) Sorption of plutonium, americium and fission products from reprocessing effluents using Rhizopus arrhizus. Biotechnol Lett 20(9):869–872

    Article  CAS  Google Scholar 

  23. Li CX, Pan JM, Gao J, Yan YS, Zhao GQ (2009) An ion-imprinted polymer supported by attapulgite with a chitosan incorporated sol–gel process for selective separation of Ce(III). Chin Chem Lett 20(8):985–989

    Article  Google Scholar 

  24. Sengupta A, Airan Y, Thulasidas SK, Natarajan V (2016) Appraising spectral interference of dysprosium on 27 analytes using capacitatively coupled device detector based inductively coupled plasma atomic emission spectroscopy. At Spectrosc 37(2):50–60

    Google Scholar 

  25. Perevalov SA, Malofeeva GI, Kuzovkina EV, Spivakov BY (2013) Solid-phase extraction of plutonium in various oxidation states from simulated groundwater using N-benzoylphenylhydroxylamine. J Radioanal Nucl Chem 295(1):1–6

    Article  CAS  Google Scholar 

  26. Schiewer S, Volesky B (1995) Model in softhe proton-metal ion exchange in biosorption. Environ Sci Technol 29(12):3049–3058

    Article  CAS  Google Scholar 

  27. Thiollet G, Musikas C (1989) Synthesis and uses of the amides extractants. Solv Extr Ion Exch 7(5):813–827

    Article  CAS  Google Scholar 

  28. Castellan GW (1983) Physical chemistry, 3rd edn. Addison-Wesley, Boston

    Google Scholar 

  29. Duff DG, Ross SMC, Huw VD (1988) Adsorption form solution: an experiment to illustrate the langmuir isotherm. J Chem Ed 65(9):815–820

    Article  CAS  Google Scholar 

  30. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  31. Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, freundlich, temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2? unto phosphoric acid modified rice husk. J Appl Chem 3(1):38–45

    Google Scholar 

  32. Sengupta A, Jayabun SK, Pius IC, Thulasidas SK (2015) Synthesis, characterization and application of metal oxides impregnated silica for the sorption of thorium. J Radioanal Nucl Chem. doi:10.1007/s10967-015-4658-4

    Google Scholar 

  33. Mohan SV, Karthikeyan J (1997) Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ Pollut 97(1–2):183–187

    Article  CAS  Google Scholar 

  34. Singh DB, Prasad G, Rupainwar DC, Singh VN (1988) As(III) removal from aqueous solution by adsorption. Water Air Soil Pollut 42(3):373–386

    CAS  Google Scholar 

  35. Sengupta A, Keskar M, Jayabun SK (2016) Sorption behaviour of metal ion on thorium tungstate synthesized by solid state route. J Radioanal Nucl Chem. doi:10.1007/s10967-016-4895-1

    Google Scholar 

  36. Sengupta A, Jayabun SK, Boda A, Ali SKM (2016) An amide functionalized task specific carbon nanotube for the sorption of tetra and hexa valent actinides: experimental and theoretical insight. RSC Adv 6(46):39553–39562

    Article  CAS  Google Scholar 

  37. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  38. Modi MK, Pattanaik P, Dash N, Subramanian S (2015) Sorption of Radionuclides. Int J Pharm Sci Rev Res 34(1):122–130

    CAS  Google Scholar 

  39. Dhami PS, Kannan R, Naik PW, Gopalakrishnan V, Ramanujam A, Salvi NA, Chattopadhyay S (2002) Biosorption of amercium using biomasses of various rhizopus species. Biotechnol Lett 24(11):855–889

    Article  Google Scholar 

  40. Dutta S, Mohapatra PK, Ramnani SP, Sabharwal S, Das AK, Manchanda VK (2008) Use of chitosan derivatives as solid phase extractors for metal ions. Desalination 232(1–3):234–242

    Article  CAS  Google Scholar 

  41. Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47(4):821–824.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Sengupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishor, P., Adya, V.C., Sengupta, A. et al. Understanding the sorption behavior of tetra- and hexavalent plutonium on fungus Rhizopus arrhizus dead biomass. J Radioanal Nucl Chem 311, 903–912 (2017). https://doi.org/10.1007/s10967-016-5104-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5104-y

Keywords

Navigation