Skip to main content
Log in

Assessing spatial distribution, sources, and potential ecological risk of heavy metals in surface sediments of the Nansi Lake, Eastern China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The study is conducted to investigate the spatial distribution, sources and ecological risk of seven heavy metals in surface sediments of Nansi Lake, Eastern China. A total of 29 samples were collected in surface sediments of Nansi Lake, and were analyzed for three nutrients (TN, TOC and TP), two major metals (Al and Fe), as well as seven trace metals (As, Cd, Cr, Cu, Hg, Pb and Zn). The mean concentrations of As, Cd, Cr, Cu, Hg, Pb, Zn, Fe and Al were 14.41, 0.22, 71.10, 30.1, 0.048, 29.14, 90.2, 30,816 and 70,653 mg kg−1, respectively, and the mean contents of these metals were higher than the background values with the exception of Cu and Fe. The spatial distribution indicated that the contents of all seven heavy metals were characterized by relatively higher contents in the upper lake than the lower lake. The hotspots with high values of As, Cd and Hg were associated with the river mouths, and the hotspots of Pb were mainly located around the dam in the central part, while no significant associations were displayed between spatial distribution of Cr, Cu, Zn and the river mouths. The mean enrichment factor (EF) values of As, Cd, Hg and Pb were 2.03, 2.93, 3.21 and 2.18, respectively, showing their moderate enrichment, while Cr, Cu and Zn with mean EF values of 1.19, 0.89 and 1.01 were deficiency to minimal enrichment. Multivariate and geostatistical analyses suggested that PC1 controlled by Cr, Cu and Zn was a lithogenic component, and come from parent rocks leaching. PC2 including Cd and partially Hg represented the factor from industrial wastewater discharge. PC3 showed elevated loadings of As and partially Cd, and could be attributed to the agricultural practices. While PC4 including Pb and partially Hg, was dominated by coal combustion. The results of potential ecological risk suggested that sediment environment of Nansi Lake suffered from high ecological risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mil-Homens M, Stevens RL, Cato I, Abrantes F (2007) Environ Pollut 148:418–427

    Article  CAS  Google Scholar 

  2. Sheykhi V, Moore F (2013) Environ Monit Assess 185:3219–3232

    Article  CAS  Google Scholar 

  3. Murray KS, Cauvet D, Lybeer M, Thomas JC (1999) Environ Sci Technol 33:987–992

    Article  CAS  Google Scholar 

  4. Diaz-de Alba M, Galindo-Riano MD, Casanueva-Marenco MJ, Garcia-Vargas M, Kosore CM (2011) J Hazard Mater 190:177–187

    Article  CAS  Google Scholar 

  5. Dixit S, Tiwari S (2008) Int J Environ Res 2:37–42

    CAS  Google Scholar 

  6. Iqbal J, Tirmizi SA, Shah MH (2013) Environ Monit Assess 185:729–743

    Article  CAS  Google Scholar 

  7. Kucuksezgin F, Kontas A, Uluturhan E (2011) Mar Pollut Bull 62:1562–1571

    Article  CAS  Google Scholar 

  8. Liu EF, Shen J, Yang XD, Zhang EL (2012) Environ Monit Assess 184:2105–2118

    Article  CAS  Google Scholar 

  9. Longjiang M, Qiang F, Duowen M, Ke H, Jinghong Y (2011) J Radioanal Nucl Chem 290:409–414

    Article  CAS  Google Scholar 

  10. Ribeiro AP, Figueiredo AMG, Sigolo JB (2005) J Radioanal Nucl Chem 263:645–651

    Article  CAS  Google Scholar 

  11. Gupta B, Kumar R, Rani M (2013) J Environ Sci Heal A 48:1231–1242

    Article  CAS  Google Scholar 

  12. Li RZ, Shu K, Luo YY, Shi Y (2010) Chinese Geogr Sci 20:9–17

    Article  Google Scholar 

  13. Loska K, Wiechula D (2003) Chemosphere 51:723–733

    Article  CAS  Google Scholar 

  14. Saleem M, Iqbal J, Shah MH (2013) J Geochem Explor 125:144–152

    Article  CAS  Google Scholar 

  15. Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Ecotoxicol Environ Saf 84:117–124

    Article  CAS  Google Scholar 

  16. Yin HB, Gao YN, Fan CX (2011) Environ Res Lett 6. doi:10.1088/1748-9326/6/4/044012

  17. Zhang Y, Hu XN, Yu T (2012) Bull Environ Contam Toxicol 89:1009–1015

    Article  CAS  Google Scholar 

  18. Cuong DT, Obbard JP (2006) Appl Geochem 21:1335–1346

    Article  CAS  Google Scholar 

  19. Shen J, Zhang ZL, Yang LY (2008) The resources and environment of Nansi Lake. Seismological Press, Beijing

    Google Scholar 

  20. Yang LY, Shen J, Zhang ZL, Zhu YX, Sun QY (2003) China Environ Sci 23:206–209

    CAS  Google Scholar 

  21. Wang XJ, Pan HJ, Yang LY, Shen J, Sun JY, Zhang ZL (2005) Trans Oceanol Limnol 27:22–28

    Google Scholar 

  22. Lu XW, Wang LJ, Lei K, Huang J, Zhai YX (2009) J Hazard Mater 161:1058–1062

    Article  CAS  Google Scholar 

  23. Yaylali-Abanuz G (2011) Microchem J 99:82–92

    Article  CAS  Google Scholar 

  24. Yuan HZ, Shen J, Liu EF, Wang JJ, Meng XH (2011) Environ Geochem Health 33:67–81

    Article  CAS  Google Scholar 

  25. Sutherland RA (2000) Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  26. Hakanson L (1980) Water Res 14:975–1001

    Article  Google Scholar 

  27. Zhu W, Bian B, Li L (2008) Environ Monit Assess 147:171–181

    Article  CAS  Google Scholar 

  28. Zhang CS, Zhang S, Wang LJ, Wang LZ (1998) Acta Geographica Sinica 53:314–322

    Google Scholar 

  29. Yang ZP, Lu WX, Long YQ, Bao XH, Yang QC (2011) J Geochem Explor 108:27–38

    Article  CAS  Google Scholar 

  30. Zhang CS (2006) Environ Pollut 142:501–511

    Article  CAS  Google Scholar 

  31. Lv J, Liu Y, Zhang Z, Dai J (2013) J Hazard Mater 261:387–397

    Article  CAS  Google Scholar 

  32. Guimaraes GM, Zahn GS, Franklin RL, Silva PSC, Favaro DIT (2012) J Radioanal Nucl Chem 291:155–161

    Article  CAS  Google Scholar 

  33. Lugendo I, Mohammed NK, Mussa LM, Spyrou NM (2013) J Radioanal Nucl Chem 297:215–220

    Article  CAS  Google Scholar 

  34. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  35. Kishe MA, Machiwa JF (2003) Environ Int 28:619–625

    Article  CAS  Google Scholar 

  36. Nguyen HL, Leermakers M, Osan J, Torok S, Baeyens W (2005) Sci Total Environ 340:213–230

    Article  CAS  Google Scholar 

  37. Yalcin MG, Tumuklu A, Sonmez M, Erdag DS (2010) Environ Monit Assess 164:311–322

    Article  CAS  Google Scholar 

  38. Alloway B (1995) Heavy metals in soils. Chapman and Hall, London

    Book  Google Scholar 

  39. Facchinelli A, Sacchi E, Mallen L (2001) Environ Pollut 114:313–324

    Article  CAS  Google Scholar 

  40. Franco-Uria A, Lopez-Mateo C, Roca E, Fernandez-Marcos ML (2009) J Hazard Mater 165:1008–1015

    Article  CAS  Google Scholar 

  41. Gu YG, Wang ZH, Lu SH, Jiang SJ, Mu DH, Shu YH (2012) Environ Pollut 163:248–255

    Article  CAS  Google Scholar 

  42. Wei BG, Yang LS (2010) Microchem J 94:99–107

    Article  CAS  Google Scholar 

  43. Sanchez J, Marino N, Vaquero MC, Ansorena J, Legorburu I (1998) Water Air Soil Pollut 107:303–319

    Article  CAS  Google Scholar 

  44. Tsuneda S, Mikami M, Kimochi Y, Hirata A (2005) J Hazard Mater 119:93–98

    Article  CAS  Google Scholar 

  45. Carrera J, Baeza JA, Vicent T, Lafuente J (2003) Water Res 37:4211–4221

    Article  CAS  Google Scholar 

  46. Mico C, Recatala L, Peris A, Sanchez J (2006) Chemosphere 65:863–872

    Article  CAS  Google Scholar 

  47. Cai LM, Xu ZC, Ren MZ, Guo QW, Hu XB, Hu GC, Wan HF, Peng PG (2012) Ecotoxicol Environ Saf 78:2–8

    Article  CAS  Google Scholar 

  48. Liu GJ, Yang P, Peng ZC, Wang GL, Cao ZH (2002) Geochimica 31:85–90

    CAS  Google Scholar 

  49. Gong X, Yao H, Zhang D, Qiao Y, Li L, Xu MH (2007) Proceedings of the 6th International Symposium on Coal Combustion:890–895

  50. Dahl O, Poykio R, Nurmesniemi H (2008) J Mater Cycles Waste Manage 10:87–92

    Article  CAS  Google Scholar 

  51. Llorens JF, Fernandez-Turiel JL, Querol X (2001) Environ Geol 40:409–416

    Article  CAS  Google Scholar 

  52. Chen TB, Wong JWC, Zhou HY, Wong MH (1997) Environ Pollut 96:61–68

    Article  CAS  Google Scholar 

  53. Zheng LG, Liu GJ, Qi CC, Chen YW, Zhang Y (2007) J Univ Sci Tech China 37:953–963

    CAS  Google Scholar 

  54. Ren JL, Zhou JS, Luo ZY, Cen KF (2002) Acta Sci Circumstantiae 22:289–293

    CAS  Google Scholar 

  55. Lg J, Yp Y, Pz C, Wg L (2003) Geochimica 32:255–262

    Google Scholar 

  56. Shi GT, Chen ZL, Xu SY, Zhang J, Wang L, Bi CJ, Teng JY (2008) Environ Pollut 156:251–260

    Article  CAS  Google Scholar 

  57. Chen X, Xia XH, Zhao Y, Zhang P (2010) J Hazard Mater 181:640–646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded jointly by National Natural Science Foundation of China (41101079), Natural Science Foundation of Shandong Province (Y2008E13), National Water Pollution Control and Management Technology Major Projects of China (2009ZX07210-007-01), and China State-Sponsored Postgraduate Study Abroad Program (201306190053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshu Lv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, J., Zhang, Z., Li, S. et al. Assessing spatial distribution, sources, and potential ecological risk of heavy metals in surface sediments of the Nansi Lake, Eastern China. J Radioanal Nucl Chem 299, 1671–1681 (2014). https://doi.org/10.1007/s10967-013-2883-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2883-2

Keywords

Navigation