Skip to main content
Log in

Sorption of dissolved mercury (II) species on calcium-montmorillonite: an unusual pH dependence of sorption process

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the special sorption properties of mercury(II) on calcium-montmorillonite is shown. Mercuric hydroxide (Hg(OH)2) produced by the hydrolysis of mercuric ions is fairly soluble, solubility is 3.2 × 10−4 mol/dm3. As a result, indifferently of the usual behavior of other hydroxides, it remains in the aqueous solution. The sorption properties are determined by the fact: there is no precipitation at higher pH values. Montmorillonite contains permanent as well as pH-dependent charges, so the cation exchange on the permanent changes, in the interlayer space of montmorillonite and the sorption of neutral mercuric hydroxide molecules can be studied simultaneously. So, two interfacial processes of the same substance, namely the ion exchange of hexahydrate mercuric(II) ions and the sorption of neutral mercuric hydroxide molecules, can be studied in the same system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loux NT (1998) Chem Spec Bioavail 10:127–136

    Article  CAS  Google Scholar 

  2. Morel FMM, Kraepiel AML, Amiot M (1998) Ann Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  3. Bringham ME, Wentz DA, Aiken GR, Krabbenhoft DP (2009) Environ Sci Technol 43:2720–2725

    Article  Google Scholar 

  4. Haitzer M, Aiken GR, Ryan JN (2003) Environ Sci Technol 37:2436–2441

    Article  CAS  Google Scholar 

  5. Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Guzmán Bernardo FJ, Jiménez Moreno M, Herculano AM, do Nascimento JLM, Crespo-López ME (2010) Environ Int 36:593–608

    Article  CAS  Google Scholar 

  6. Conawaya CH, Squirea S, Masonb RP, Flegal AR (2003) Mar Chem 80:199–225

    Article  Google Scholar 

  7. Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK (2008) Science 320:335

    Article  CAS  Google Scholar 

  8. Grigal DF, Nater EA, Homann PS (1994) In: Watras CJ, Huckabee J (eds) Mercury pollution: toward integration and synthesis. Lewis Publishers, Albany, pp 305–312

    Google Scholar 

  9. Grondin A, Lucotte M, Mucci A, Fortin B (1995) Can J Fish Aquat Sci 52:2493–2506

    Article  CAS  Google Scholar 

  10. Liao K, Selim HM, DeLaune RD (2009) J Environ Qual 38:1608–1616

    Article  CAS  Google Scholar 

  11. Xiaohong Y, Lijun Z, Baiwei G, Yi L (2006) Chinese J Geochem 25:408–412

    Article  Google Scholar 

  12. Bengtsson G, Picado F (2008) Chemosphere 73:526–531

    Article  CAS  Google Scholar 

  13. Das SK, Das AR, Guha AK (2007) Environ Sci Tech 41:8281–8287

    Article  CAS  Google Scholar 

  14. Viraraghavan T, Kapoor A (1995) J Environ Sci Health A 30:553–566

    Article  Google Scholar 

  15. Arnfalk P, Wasay SA, Tokunaga S (1996) Water Air Soil Pollut 87:131–148

    Article  CAS  Google Scholar 

  16. Melamed R, da Luz AB (2006) Sci Total Environ 368:403–406

    Article  CAS  Google Scholar 

  17. Sajidu SMI, Masamba WRL, Henry EMT, Kayambazinthu D (2006) Water SA 32:519–526

    CAS  Google Scholar 

  18. Green-Ruiz C (2009) Environ Technol 30:63–68

    Article  CAS  Google Scholar 

  19. Newton DW, Ellis R Jr, Paulsen GM (1976) J Environ Qual 5:251–254

    Article  CAS  Google Scholar 

  20. Nguyen VD, Kniewald G, Branica M (1994) Mar Chem 46:33–47

    Article  CAS  Google Scholar 

  21. Viraraghavan T, Kapoor A (1994) Appl Clay Sci 9:31–49

    Article  CAS  Google Scholar 

  22. Chu W-S, Wu Z-Y, Liu W-H, Malferrari D, Brigatti MF, Cibin G, Marcelli A (2005) High Energy Phys Nucl Phys 29:84–88

    Google Scholar 

  23. Benhammou A, Yaacoubi A, Nibou L, Tanouti B (2005) J Hazard Mater 117:243–249

    Article  CAS  Google Scholar 

  24. Barrow NJ, Cox VC (2006) Eur J Soil Sci 43:295–304

    Google Scholar 

  25. Srakar D, Essington ME, Misra KC (1999) Soil Sci Soc Am J 63:1626–1636

    Article  Google Scholar 

  26. Hassanien MM, Abou-El-Sherbini KS (2010) J Hazardous Mater 178:94–100

    Article  CAS  Google Scholar 

  27. Boyd GE, Schubert J, Adamson AW (1947) J Am Chem Soc 69:2818–2829

    Article  CAS  Google Scholar 

  28. Imre L (1933) Zeitschrift für physikalische Chemie A 164:343–363

    Google Scholar 

  29. Kónya J, Nagy NM (2009) Per Pol Chem Eng 53:55–60

    Google Scholar 

  30. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford, p 426

    Google Scholar 

  31. VisualMinteq Database

  32. Generalic E, Vardhan A, Ditria M, Bralic M, Brinic S, Hens M (eds) (1998) Periodic table of the elements. www.ktf-split.hr/periodni/en/abc/kpt.html

  33. Wang X, Andrews L (2005) Inorg Chem 44:108–113

    Article  Google Scholar 

  34. Sparks DL (2003) Environmental soil chemistry. Academic Press, Amsterdam

    Google Scholar 

  35. Nagy NM, Kónya J (2009) Interfacial chemistry of rocks and soils. CRC Press, Boca Raton

    Book  Google Scholar 

  36. Richards LA (1957) Diagnosis and improvement of saline and alkaline soils, US Dept Agr Handbook p 60

  37. Nagy NM, Kónya (2004) J Appl Clay Sci 25:57–69

    Article  CAS  Google Scholar 

  38. Nagy NM, Kónya J (1988) Colloids Surf 32:223–235

    Article  CAS  Google Scholar 

  39. Stadler M, Schindler PW (1993) Clays Clay Miner 41:288–296

    Article  CAS  Google Scholar 

  40. Nagy NM, Kónya J, Urbin Z (1997) Colloids Surf 121:117–124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project. The project is implemented trough the New Hungarian development Plan, co-financed by the European Social Fund and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noémi M. Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kónya, J., Nagy, N.M. Sorption of dissolved mercury (II) species on calcium-montmorillonite: an unusual pH dependence of sorption process. J Radioanal Nucl Chem 288, 447–454 (2011). https://doi.org/10.1007/s10967-010-0968-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0968-8

Keywords

Navigation