Skip to main content
Log in

Strong Stationary Duality for Diffusion Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well-chosen sequence of approximating birth-and-death Markov chains, allowing for simultaneous numerical simulations of our primal and dual diffusion processes. Lastly, we show how our new definition of diffusion duality allows the spectral theory of cutoff phenomena to extend naturally from birth-and-death Markov chains to the present diffusion context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth Dover printing, tenth GPO printing edition (1964)

  2. Bhattacharya, R.N., Waymire, E.C.: Stochastic processes with applications. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York (1990)

  3. Billingsley, P.: Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)

  4. Diaconis, P., Fill, J.A.: Strong stationary times via a new form of duality. Ann. Probab. 18(4), 1483–1522 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diaconis, P., Miclo, L.: On times to quasi-stationarity for birth and death processes. J. Theoret. Probab. 22(3), 558–586 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diaconis, P., Saloff-Coste, L.: Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16(4), 2098–2122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dynkin, E. B.: Markov processes. Vols. I, II, volume 122 translated with the authorization and assistance of the author by J. Fabius, V. Greenberg, A. Maitra, G. Majone. Die Grundlehren der Mathematischen Wissenschaften, Bände 121. Academic Press Inc., New York (1965)

  8. Ethier, S.N., Kurtz, T.G.: Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986). Characterization and convergence

  9. Fill, J.A.: Strong stationary duality for continuous-time Markov chains. Part I: theory. J. Theor. Probab. 5, 45–70 (1992). doi:10.1007/BF01046778

    Article  MathSciNet  MATH  Google Scholar 

  10. Fill, J.A.: An interruptible algorithm for perfect sampling via Markov chains. Ann. Appl. Probab. 8(1), 131–162 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fill, J.A.: The passage time distribution for a birth-and-death chain: strong stationary duality gives a first stochastic proof. J. Theoret. Probab. 22(3), 543–557 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fill, J.A., Kahn, J.: Comparison inequalities and fastest-mixing markov chains. Ann. Appl. Probab. 23(5), 1778–1816 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fill, J.A., Lyzinski, V.: Hitting times and interlacing eigenvalues: a stochastic approach using intertwinings. J. Theor. Probab. 27(3), 954–981 (2012)

  14. Fill, J.A., Machida, M., Murdoch, D.J., Rosenthal, J.S.: Extension of Fill’s perfect rejection sampling algorithm to general chains. Random Struct. Algorithms 17(3–4), 290–316 (2000). Special issue: Proceedings of the Ninth International Conference “Random Structures and Algorithms” (Poznan, 1999)

  15. Holley, R., Stroock, D.: Dual processes and their application to infinite interacting systems. Adv. Math. 32(2), 149–174 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Itô, K., McKean, H.P. Jr.: Diffusion Processes and Their Sample Paths. Springer, Berlin (1974). Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125

  17. Karlin, S., McGregor, J.: Coincidence properties of birth and death properties. Pacific J. Math. 9, 1109–1140 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1981)

    MATH  Google Scholar 

  19. Kent, J.T.: Eigenvalue expansions for diffusion hitting times. Z. Wahrsch. Verw. Gebiete 52(3), 309–319 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knight, F.B.: Essentials of Brownian motion and diffusion. Mathematical Surveys, vol. 18. American Mathematical Society, Providence, R.I. (1981)

  21. Lamperti, J.: Stochastic Processes. Springer, New York (1977). A survey of the mathematical theory, Applied Mathematical Sciences, vol. 23

  22. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  23. Lyzinski, V.: Intertwinings, interlacing eigenvalues, and strong stationary duality for diffusions. PhD thesis, Johns Hopkins University (January 2013)

  24. Miclo, L.: Strong stationary times for one-dimensional diffusions. arXiv preprint arXiv:1311.6442 (2013)

  25. Pal, S., Shkolnikov, M.: Intertwining diffusions and wave equations. arXiv preprint arXiv:1306.0857 (2013)

  26. Rogers, L.C.G., Pitman, J.W.: Markov functions. Ann. Probab. 9(4), 573–582 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rogers, L.C.G., Williams, D.: Diffusions, Markov processes, and martingales, vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). Itô calculus, Reprint of the second (1994) edition

  28. Sharpe, M.: General theory of Markov processes, Volume 133 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA (1988)

    Google Scholar 

  29. Sneddon, I.N.: On some infinite series involving the zeros of Bessel functions of the first kind. Proc. Glasgow Math. Assoc. 4, 144–156 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stroock, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes, volume 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1979). Reprinted in 2006

  31. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I., 2nd edn. Clarendon Press, Oxford (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Allen Fill.

Additional information

Research supported by the Acheson J. Duncan Fund for the Advancement of Research in Statistics, and by US Department of Education GAANN grant P200A090128.

Appendix: Details of Theorem 4.2

Appendix: Details of Theorem 4.2

In proving Theorem 4.1, we made use of Theorem 4.2 adapted from [8], Theorems 4.8.2 and 1.6.5 and Corollary 4.8.9]. We restate the theorem here:

Theorem 4.2 Let \(A\) be the generator (as in Sect. 2 ) of a regular diffusion process \(Y\) with state space \(\mathcal {Y}\). Assume \(h_n > 0\) converges to \(0\) as \(n \rightarrow \infty \). Let \(X^{n}\sim (\pi _0^{n},P^{n})\) be a Markov chain on metric state space \(\mathcal {Y}^{n} \subset \mathcal {Y}\) and define \(Y^{n}_t := X^{n}_{\lfloor t/h_{n} \rfloor }\). Further assume \(Y^{n}_0\Rightarrow Y_0\). Letting \(\mathcal {B}(\mathcal {Y}^n)\) be the space of real-valued bounded measurable functions on \(\mathcal {Y}^n\), define \(T^{n}:\mathcal {B}(\mathcal {Y}^{n})\rightarrow \mathcal {B}(\mathcal {Y}^n)\) via

$$\begin{aligned} T^{n} f(x)={\mathbb {E}}_x f(X^{n}_1). \end{aligned}$$

Let \(\rho _{n}:C(\mathcal {Y})\rightarrow \mathcal {B}(\mathcal {Y}^{n})\) be defined via \(\rho _{n}f(\cdot )=f |_{\mathcal {Y}^{n}}(\cdot )\). If \({\mathcal {D}}_{A}\) is an algebra that strongly separates points, and

$$\begin{aligned} \lim _{n\rightarrow \infty } \sup _{y\in \mathcal {Y}^{n} }\left| (A^{n}\rho _{n} f)(y) - (A f)(y) \right| =0 \end{aligned}$$
(7.1)

for all \(f\in {\mathcal {D}}_{A}\), then \(Y^n \Rightarrow Y\).

The purpose of this appendix is to carefully spell out the proof of the above theorem, as the notation in [8] differs considerably from the notation we have adopted. The following chart gives the notational equivalences between the present work and [8]; in connection with \(\mu _n(x, \cdot )\), see Corollary 4.8.5 in [8].

Notation in present work:

Notation in [8]:

\(\mathcal {Y}\) with the Euclidean metric

\((E, r)\)

\(\mathcal {Y}^{n},\ A^{n},\ T^{n}\)

\(E_n,\ A_n,\ T_n\)

\(P^{n}(x,\cdot )\)

\(\mu _n(x,\cdot )\)

\(\{(f,Af)\,|\,f\in {\mathcal {D}}_{A}\}\)

\(A\)

\({\mathcal {D}}_{A}\)

\({\mathcal {D}}_{A}\)

\(C({\mathcal {S}})\)

\(L\)

\(1 / h_n\)

\(\alpha _n\)

\(\text {id}\)

\(\eta _n\)

\(\rho _{n}\)

\(\pi _n\)

Here \(\rho _{n}:C(\mathcal {Y})\rightarrow \mathcal {B}(\mathcal {Y}^{n})\) is defined via \(\rho _{n}f(\cdot )=f |_{\mathcal {Y}^{n}}(\cdot )\), and \(\text {id}:\mathcal {Y}^{n}\rightarrow \mathcal {Y}\) is the inclusion function embedding \(\mathcal {Y}^{n}\) into \(\mathcal {Y}\).

Proof of Theorem 4.2

Clearly \(C(\mathcal {Y})\) is convergence determining, and by considering suitably smooth uniform approximations in \({\mathcal {D}}_{A}\) to the indicator function of \(\{x\}\) for each \(x\in \mathcal {Y}\), it follows that \({\mathcal {D}}_{A}\subset C(\mathcal {Y})\) is an algebra that strongly separates points. In the notation of [8], Corollary 4.8.9], we have \(G_n=E_n=\mathcal {Y}^n\) , and so to prove \(Y^n\Rightarrow Y\), it suffices to prove that for each \(T > 0\) and \(f \in C(\mathcal {Y})\) we have

$$\begin{aligned} \lim _{n \rightarrow \infty }\sup _{y\in \mathcal {Y}^{n}}\left| (T^{n})^{\left\lfloor t / h \right\rfloor } \rho _{n} f(y)-\rho _{n} T_t f(y)\right| , \qquad 0\le t\le T. \end{aligned}$$
(7.2)

From [8], Theorem 1.6.5], to prove (7.2) it suffices to establish that for all \(f\in {\mathcal {D}}_{A}\) we have that \(\rho _{n} f\in \mathcal {B}(\mathcal {Y}^{n}) (=L_n\) in the notation of [8], Theorem 1.6.5]) satisfies

$$\begin{aligned} \lim _{n \rightarrow \infty } \sup _{y\in \mathcal {Y}^{n} }\left| \rho _{n} f(y) - f(y) \right| = 0 \end{aligned}$$
(7.3)

and

$$\begin{aligned} \lim _{n \rightarrow \infty } \sup _{y\in \mathcal {Y}^{n} }\left| (A^{n}\rho _{n} f)(y) - (A f)(y) \right| =0. \end{aligned}$$
(7.4)

But (7.3) is clearly true, and (7.4) is assumed (for all \(f\in {\mathcal {D}}_{A}\)) in the statement of Theorem 4.2. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fill, J.A., Lyzinski, V. Strong Stationary Duality for Diffusion Processes. J Theor Probab 29, 1298–1338 (2016). https://doi.org/10.1007/s10959-015-0612-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-015-0612-1

Keywords

Mathematics Subject Classification (2000)

Navigation