Skip to main content
Log in

General Large Deviations and Functional Iterated Logarithm Law for Multivalued Stochastic Differential Equations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we prove a large deviation principle of Freidlin–Wentzell type for multivalued stochastic differential equations (MSDEs) that is a little more general than the results obatined by Ren et al. (J Theor Prob 23:1142–1156, 2010). As an application, we derive a functional iterated logarithm law for the solutions of MSDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R.F., Orey, S.: Small random perturbation of dynamical systems with reflecting boundary. Nagoya Math. J. 60, 189–216 (1976)

    MathSciNet  Google Scholar 

  2. Baldi, P.: Large deviations and functional iterated logarithm law for diffusion processes. Probab. Theory Relat. Fields 71, 435–453 (1986)

    Article  MathSciNet  Google Scholar 

  3. Baldi, P., Sanz, M.: Une remarque sur la théorie des grandes déviations. In: Azéma, J., Meyer, P.A., Yor, M. (eds.) Séminaire de Probabilités XXV, Lecture Notes in Math., vol. 1485, pp. 345–348. Springer, Berlin (1991)

  4. Baldi, P., Chaleyat-Maurel, M.: An extension of Ventsel–Freidlin estimate. In: Stochastic Analysis and Related Topic (Silivri, 1986). Lecture Notes in Math., vol. 1316, pp. 305–327. Springer, Berlin (1988)

  5. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noord-Hoff Internet Publishing, Leyden (1976)

    Book  Google Scholar 

  6. Barbu, V., Da Prato, G.: The generator of the transition semigroup corresponding to a stochastic variational inequality. Commun. Partial Differ. Equ. 33, 1318–1338 (2008)

    Article  Google Scholar 

  7. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20(1). Acta Univ. Wratislav. 2246, 39–61 (2000)

    Google Scholar 

  8. Caramellino, L.: Strassen’s law of the iterated logarithm for diffusion processes for small time. Stoch. Proc. Appl. 74, 1–19 (1998)

    Article  MathSciNet  Google Scholar 

  9. Cépa, E.: Équations différentielles stochastiques multivoques. In: Séminaire de Probabilités XXIX. Lecture Notes in Math., vol. 1613, pp. 86–107. Springer, Berlin (1995)

  10. Cépa, E.: Probleme de Skorohod multivoque. Ann. Probab. 26(2), 500–532 (1998)

    Article  MathSciNet  Google Scholar 

  11. Cépa, E., Jacquot, S.: Ergodicité d’inégalités variationnelles stochastiques. Stoch. Stoch. Rep. 63, 41–64 (1997)

    Article  Google Scholar 

  12. Deuschel, J.D., Stroock, D.W.: Large Deviations. Academic Press, New York (1988)

    Google Scholar 

  13. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    Book  Google Scholar 

  14. Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis, Grund. Text Ed. Springer, Berlin (2001)

    Book  Google Scholar 

  15. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. Kodansha, Tokyo (1989)

    Google Scholar 

  16. Rabeherimanana, T.J.: Grandes déviations et loi fonctionnelle du logarithme itéré pour les processus de diffusions avec réflexion. Annales Mathématiques Blaise Pascal 14, 61–76 (2007)

    Article  MathSciNet  Google Scholar 

  17. Rascanu, A.: Deterministic and stochastic differential equations in Hilbert spaces involving multivalued maximal monotone operators. Panam. Math. J. 6(3), 83–119 (1996)

    MathSciNet  Google Scholar 

  18. Ren, J., Xu, S., Zhang, X.: Large deviation for multivalued stochastic differenital equations. J. Theor. Probab. 23(4), 1142–1156 (2010)

    Article  MathSciNet  Google Scholar 

  19. Ren, J., Zhang, X.: Stochastic flows for SDEs with non-Lipschitz coefficients. Bull. Sci. Math. 127, 739–754 (2003)

    Article  MathSciNet  Google Scholar 

  20. Skorohod, A.V.: Stochastic equations for diffusions in a bounded region. Theory Probab. Appl. 6, 264–274 (1961)

    Article  Google Scholar 

  21. Wu, J.: Uniform large deviation for multivalued stochastic differenital equations with jumps. Kyoto J. Math. 51(3), 535–559 (2011)

    Article  MathSciNet  Google Scholar 

  22. Zalinescu, A.: Second order Hamilton–Jacobi–Bellman equations with unbounded operator. Nonlinear Anal. 75, 4784–4797 (2012)

    Article  MathSciNet  Google Scholar 

  23. Zhang, X.: Skorohod problem and multivalued stochastic evolution equations in Banach spaces. Bull. Sci. Math. 131(2), 175–217 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Additional information

This work is supported by NSFs of China (No. 11171358, 11101441 and 11301553), Doctor Fund of Ministry of Education (No. 20100171110038, 20100171120041 and 20120171120008) and China Postdoctoral Science Foundation (No. 2013T60817).

Appendix: Proof of (9)

Appendix: Proof of (9)

Lemma 6.1

Assume that (H1)(H4) hold. Let \(X^{\epsilon ,h_{\epsilon }}\) and \(\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha }\) solve Eqs. (4) and (8), respectively. Then for any \(x\in \overline{D(A)}\), we have

$$\begin{aligned} \lim _{\alpha \rightarrow 0}\mathbf{E}\sup _{t\in [0,T]}|\widetilde{X}^{\epsilon , h_{\epsilon ,\alpha }}(t)-X^{\epsilon ,h_{\epsilon }}(t)|^2=0 \end{aligned}$$

uniformly in \(\epsilon >0\).

Proof

We denote by \(M_{\epsilon }^n(t)\) the \(\mathcal {C}^{\infty }\)-approximation of \(M_{\epsilon }(t)\), which is defined as follows:

$$\begin{aligned} M_{\epsilon }^n(t):=n\int \limits _{t-\frac{1}{n}}^{t+\frac{1}{n}}M_{\epsilon }\left( s-\frac{1}{n}\right) \rho (n(t-s)){\mathord {\mathrm{d}}}s, \end{aligned}$$

where \(\rho \) is a mollifier with \(supp \rho \subset (-1,1)\), \(\rho \in C^{\infty }\) and \(\int \nolimits _{-1}^1\rho (s){\mathord {\mathrm{d}}}s=1\). It is easy to obtain from (6) and (7)

$$\begin{aligned}&M_{\epsilon }^n(0)=0,\\&\lim _{n\rightarrow \infty }\mathbf{E}\sup _{t\in [0,T]}|M_{\epsilon }^n(t)-M_{\epsilon }(t)|^2=0,\\&\sup _{t\in [0,T]}|M_{\epsilon }^n(t)|\leqslant \sup _{t\in [0,T]}|M_{\epsilon }(t)|\quad \text {a.s.},\\&\sup _{|t'-t|\leqslant \delta }|M_{\epsilon }^n(t')-M_{\epsilon }^n(t)|\leqslant \sup _{|t'-t|\leqslant \delta }|M_{\epsilon }(t')-M_{\epsilon }(t)|\quad \text {a.s.},\forall \delta >0,\\&\mathbf{E}\sup _{t\in [0,T]}|\dot{M}_{\epsilon }^n(t)|^2+\mathbf{E}\sup _{t\in [0,T]}|\ddot{M}_{\epsilon }^n(t)|^2\leqslant C_n, \end{aligned}$$

where \(C_n\) is a constant which does not depend on \(\epsilon \) and \(\alpha \).

Let \((X^{\epsilon ,h_{\epsilon },n}(\cdot ,x),K^{\epsilon ,h_{\epsilon },n}(\cdot ,x))\) solve the following MSDE:

$$\begin{aligned} \left\{ \begin{array}{l} {\mathord {\mathrm{d}}}X^{\epsilon ,h_{\epsilon },n}(t)\in {\mathord {\mathrm{d}}}M_{\epsilon }^n(t)-A_{\epsilon }(X^{\epsilon ,h_{\epsilon },n}(t)){\mathord {\mathrm{d}}}t,\\ X^{\epsilon ,h_{\epsilon },n}(0)=x, \end{array}\right. \end{aligned}$$

and \(\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t,x)\) solve the following differential equation:

$$\begin{aligned} \left\{ \begin{array}{l} {\mathord {\mathrm{d}}}\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t)={\mathord {\mathrm{d}}}M_{\epsilon }^n(t)-A_{\epsilon }^{\alpha }(\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t)){\mathord {\mathrm{d}}}t,\\ \widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(0)=x. \end{array}\right. \end{aligned}$$

Now we split our proof into three steps.

Step 1

First we prove

$$\begin{aligned} \lim _{n\rightarrow \infty }\mathbf{E}\sup _{t\in [0,T]}|X^{\epsilon ,h_{\epsilon },n}(t)-X^{\epsilon ,h_{\epsilon }}(t)|=0 \end{aligned}$$
(23)

uniformly in \(\epsilon \). For this, we proceed as follows. By [10, Proposition 4.3], we have

$$\begin{aligned}&\sup _{t\in [0,T]}|X^{\epsilon ,h_{\epsilon },n}(t)-X^{\epsilon ,h_{\epsilon }}(t)|^2\\&\quad \leqslant \sup _{t\in [0,T]}|M_{\epsilon }^n(t)\!-\!M_{\epsilon }(t)|^{1/2}\left( \sup _{t\in [0,T]}|M_{\epsilon }^n(t)\!-\!M_{\epsilon }(t)|\!+\!4|K^{\epsilon ,h_{\epsilon },n}|_T^0\!+\!4|K^{\epsilon ,h_{\epsilon }}|_T^0\right) ^{1/2}. \end{aligned}$$

By Lemma 4.2, we have

$$\begin{aligned} \mathbf{E}|K^{\epsilon ,h_{\epsilon }}|_T^0\leqslant C \end{aligned}$$

where \(C\) is a constant which does not depend on \(\epsilon \). We still need to verify

$$\begin{aligned} \mathbf{E}|K^{\epsilon ,h_{\epsilon },n}|_T^0\leqslant C, \end{aligned}$$

where \(C\) is a constant which does not depend on \(n\) and \(\epsilon \). By Proposition 2.1 we have

$$\begin{aligned}&|X^{\epsilon ,h_{\epsilon },n}(t')-a|^2-|X^{\epsilon ,h_{\epsilon },n}(t)-a|^2\\&\quad \leqslant |M_{\epsilon }^n(t')+x-a|^2-|M_{\epsilon }^n(t)+x-a|^2\\&\qquad -\,\,2\gamma |K^{\epsilon ,h_{\epsilon },n}|_t^{t'}+2\gamma \mu (t'-t)+2\mu \int \limits _t^{t'}|X^{\epsilon ,h_{\epsilon },n}(s)-a|{\mathord {\mathrm{d}}}r\\&\qquad +\,\,2\int \limits _t^{t'}{\langle }M_{\epsilon }^n(s)-M_{\epsilon }(s),{\mathord {\mathrm{d}}}K^{\epsilon ,h_{\epsilon },n}(s){\rangle }_{{\mathbb {R}}^m}\\&\qquad +\,\,2{\langle }X^{\epsilon ,h_{\epsilon },n}(t')-x-M_{\epsilon }^n(t'),M_{\epsilon }^n(t')-M_{\epsilon }^n(t){\rangle }_{{\mathbb {R}}^m}\\&\quad \leqslant C\left( 1+\sup _{t\in [0,T]}|M_{\epsilon }(t)|^2+\sup _{t\in [0,T]}|X^{\epsilon ,h_{\epsilon },n}(t)-a|\right) \\&\qquad +\,\,2\left( \sup _{|s'-s|\leqslant t'-t}|M_{\epsilon }(s')-M_{\epsilon }(s)|-\gamma \right) |K^{\epsilon ,h_{\epsilon },n}|_{t'}^t. \end{aligned}$$

Hence

$$\begin{aligned}&|X^{\epsilon ,h_{\epsilon },n}(t')-a|^2-|X^{\epsilon ,h_{\epsilon },n}(t)-a|^2+\frac{\gamma }{2}|K^{\epsilon ,h_{\epsilon },n}|_{t'}^t\\&\quad \leqslant C\left( 1+\sup _{t\in [0,T]}|M_{\epsilon }(t)|^2+\sup _{t\in [0,T]}|X^{\epsilon ,h_{\epsilon },n}(t)-a|\right) \end{aligned}$$

on the set

$$\begin{aligned} {\varOmega }_{\epsilon ,n,\delta }=\left\{ \sup _{|s'-s|\leqslant \delta }|M_{\epsilon }^n (s')-M_{\epsilon }^n(s)|\leqslant \frac{\gamma }{2}\right\} . \end{aligned}$$

Consequently, applying the same procedure in [10, Proposition 4.9], we obtain

$$\begin{aligned} |K^{\epsilon ,h_{\epsilon },n}|_T^01_{{\varOmega }_{\epsilon ,n,\delta }} \leqslant \frac{C\Big (1+\sup _{t\in [0,T]}|M_{\epsilon }(t)|^2\Big )}{\delta }. \end{aligned}$$

For \(p>6\), this yields

$$\begin{aligned} \mathbf{E}|K^{\epsilon ,h_{\epsilon },n}|_T^0&= \sum _{k=1}^{\infty }\mathbf{E}\left[ |K^{\epsilon ,h_{\epsilon },n}|_T^01_{{\varOmega }_{\epsilon ,n,\frac{1}{k+1}}\backslash {\varOmega }_{\epsilon ,n,\frac{1}{k}}}\right] \\&\leqslant C\sum _{k=1}^{\infty }(k+1)\mathbf{P}\left( {\varOmega }_{\epsilon ,n,\frac{1}{k}}^c\right) \\&\leqslant C\sum _{k=1}^{\infty }(k+1)\mathbf{E}\sup _{|t'-t|\leqslant \frac{1}{k}}|M_{\epsilon }(t')-M_{\epsilon }(t)|^p\\&\leqslant C\sum _{k=1}^{\infty }(k+1)\left( \frac{1}{k}\right) ^{p/2-1}<\infty . \end{aligned}$$

Therefore, we obtain the desired estimate, and hence (23) is satisfied.

Step 2

Similarly to Step 1, we can prove

$$\begin{aligned} \lim _{n\rightarrow \infty }\mathbf{E}\sup _{t\in [0,T]}|\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t)-\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha }(t)|=0 \end{aligned}$$
(24)

uniformly in \(\epsilon \) and \(\alpha \).

Step 3

Let \(\alpha ,\beta >0\). Since \(A_{\epsilon }^{\alpha }(x)\in A_{\epsilon }(J^{\alpha }(x))\), we have

$$\begin{aligned} {\langle }A_{\epsilon }^{\alpha }(x)-A_{\epsilon }^{\beta }(y),x-y{\rangle }_{{\mathbb {R}}^m}\geqslant -(\alpha +\beta ){\langle }A_{\epsilon }^{\alpha }(x),A_{\epsilon }^{\beta }(y){\rangle }_{{\mathbb {R}}^m},\quad \forall x,y\in {\mathbb {R}}^m. \end{aligned}$$

Therefore

$$\begin{aligned}&\sup _{t\in [0,T]}|\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t)-\widetilde{X}^{\epsilon ,h_{\epsilon },\beta ,n}(t)|^2\\&\quad =\sup _{t\in [0,T]}\left| \!-\!\int \limits _0^t{\langle }A_{\epsilon }^{\alpha }(\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(s))\!-\!A_{\epsilon }^{\beta }(\widetilde{X}^{\epsilon ,h_{\epsilon },\beta ,n}(s)),\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(s)\!-\!\widetilde{X}^{\epsilon ,h_{\epsilon },\beta ,n}(s){\rangle }_{{\mathbb {R}}^m}{\mathord {\mathrm{d}}}s\right| \\&\quad \leqslant (\alpha +\beta )\int \limits _0^T|A_{\epsilon }^{\alpha }(\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(s)||A_{\epsilon }^{\beta }(\widetilde{X}^{\epsilon ,h_{\epsilon },\beta ,n}(s)|{\mathord {\mathrm{d}}}s\\&\quad \leqslant (\alpha +\beta )T\sup _{t\in [0,T]}|A_{\epsilon }^{\alpha }(\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t)|\sup _{t\in [0,T]}|A_{\epsilon }^{\beta }(\widetilde{X}^{\epsilon ,h_{\epsilon },\beta ,n}(t)|. \end{aligned}$$

As in the proof of [10, Proposition 4.7], we have

$$\begin{aligned} \left| \frac{{\mathord {\mathrm{d}}}}{{\mathord {\mathrm{d}}}s}\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}\right| \leqslant |\dot{M}_{\epsilon }^n(t)|+|A_{\epsilon }^0(x)|+\int \limits _0^t|\ddot{M}_{\epsilon }^n(s)|{\mathord {\mathrm{d}}}s, \end{aligned}$$

and this gives

$$\begin{aligned} \sup _{t\in [0,T]}|A_{\epsilon }^{\alpha }(\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t))|\leqslant |A_{\epsilon }^0(x)|+2\sup _{t\in [0,T]}|\dot{M}_{\epsilon }^n(t)|+T\sup _{t\in [0,T]}|\ddot{M}_{\epsilon }^n(t)|. \end{aligned}$$

Consequently we have

$$\begin{aligned} \mathbf{E}\sup _{t\in [0,T]}|\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t)-\widetilde{X}^{\epsilon ,h_{\epsilon },\beta ,n}(t)|^2\leqslant C_n(\alpha +\beta ), \end{aligned}$$

where \(C_n\) is a constant independent of \(\epsilon \), \(\alpha \) and \(\beta \). We know from [10, Proposition 4.7] that

$$\begin{aligned} \sup _{t\in [0,T]}|\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t)-{X}^{\epsilon ,h_{\epsilon },n}(t)|\rightarrow 0\quad \text {a.s.}\quad \text {as}\quad \alpha \rightarrow 0. \end{aligned}$$

Therefore we have

$$\begin{aligned} \lim _{\alpha \rightarrow 0}\mathbf{E}\sup _{t\in [0,T]}|\widetilde{X}^{\epsilon ,h_{\epsilon },\alpha ,n}(t)-{X}^{\epsilon ,h_{\epsilon },n}(t)|^2=0 \end{aligned}$$
(25)

uniformly in \(\epsilon \).

Then the proof is completed by (23)–(25). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J., Wu, J. & Zhang, H. General Large Deviations and Functional Iterated Logarithm Law for Multivalued Stochastic Differential Equations. J Theor Probab 28, 550–586 (2015). https://doi.org/10.1007/s10959-013-0531-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-013-0531-y

Keywords

Navigation