Skip to main content
Log in

Activity Coefficient Modelling of Aqueous Solutions of Alkyl Ammonium Salts using the Extended UNIQUAC Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Certain alkyl ammonium salts are called ionic liquids They can be used as green solvents without toxicity, effects on the ozone layer depletion, effects on climate change, and any other significant environmental impacts; in this regard knowledge about their thermo-physical properties are really important. In this work activity coefficients of aqueous solutions of alkyl ammonium salts at 298.15 and 293.15 K are modelled using the Extended UNIQUAC (Universal Quasi Chemical) thermodynamic model. Adjustable parameters of the Extended UNIQUAC thermodynamic model were obtained by non-linear regression between experimental data and the results calculated from the model. The results of the model are in good agreement with the experimental values in most cases, the average absolute deviation of the model being less than 2 %, which is acceptable considering the uncertainty of the experimental data. Additionally, the results gained from the Extended UNIQUAC model are also compared with the results obtained from Electrolyte NRTL and Pitzer thermodynamic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ILs:

Ionic liquids

AARD:

Absolute average relative deviation

QAS:

Quaternary ammonium salts

DHLL:

Debye–Hückel limiting law

NRTL:

Non-random two-liquid

UNIQUAC:

Universal quasi chemical

x i :

Mole fraction of component i

r i :

Volume area parameter for component i

q i :

Surface area parameter for component i

δ:

Standard deviation

γ:

Activity coefficient

G :

Gibbs energy

H :

Enthalpy

R :

Gas constant

References

  1. Babamohammadi, S., Shamiri, A., Aroua, K.M.: A review of CO2 capture by absorption in ionic liquid-based solvents. Rev. Chem/Eng. 31, 383–412 (2015)

    CAS  Google Scholar 

  2. Belvèze, L.S.: Modeling and Measurement of Thermodynamic Properties of Ionic Liquids, p. 129. University of Notre Dame, Indiana (2004)

    Google Scholar 

  3. Belvèze, L.S., Brennecke, J.F., Stadtherr, M.A.: Modeling of activity coefficients of aqueous solutions of quaternary ammonium salts with the electrolyte-NRTL equation. Ind. Eng. Chem. Res. 43, 815–825 (2004)

    Article  Google Scholar 

  4. Eike, D.M., Brennecke, J.F., Maginn, E.J.: Predicting melting points of quaternary ammonium ionic liquids. Green Chem. 5, 323–328 (2003)

    Article  CAS  Google Scholar 

  5. Shahriari, R., Dehghani, M.R., Behzadi, B.: Thermodynamic modeling of aqueous ionic liquid solutions using PC-SAFT equation of state. Ind. Eng. Chem. Res. 51, 10274–10282 (2012)

    Article  CAS  Google Scholar 

  6. Borhani, T.N.G., Azarpour, A., Akbari, V., Wan Alwi, S.R., Manan, Z.A.: CO2 capture with potassium carbonate solutions: A state-of-the-art review. Int. J. Greenhouse Gas Control 41, 142–162 (2015)

    Article  CAS  Google Scholar 

  7. Taboada-Pan, C., Brandariz, I., Barriada, J.L., Vilariño, T., de Sastre Vicente, M.E.: The salting coefficient and size of alkylamines in saline media at different temperatures: estimation from Pitzer equations and the mean spherical approximation. Fluid Phase Equil 180, 313–325 (2001)

    Article  CAS  Google Scholar 

  8. Boyd, G.E., Schwarz, A., Lindenbaum, S.: Structural effects on the osmotic and activity coefficients of the quaternary ammonium halides in aqueous solutions at 25°. J. Phys. Chem. 70, 821–825 (1966)

    Article  CAS  Google Scholar 

  9. Amado, G.E., Blanco, L.H.: Isopiestic determination of the osmotic and activity coefficients of dilute aqueous solutions of symmetrical and unsymmetrical quaternary ammonium bromides with a new isopiestic cell at 298.15 °K. Fluid Phase Equil 233, 230–233 (2005)

    Article  CAS  Google Scholar 

  10. Thomsen, K.: Electrolyte solutions: thermodynamics, crystallization, separation methods, in DTU Chemical Engineering, Technical University of Denmark. http://www.staff.dtu.dk/kajt/~/media/kajt/Electrolyte%20notes2009.ashx (2009). Accessed 31 Aug 2016

  11. Cruz, J.-L., Renon, H.: A new thermodynamic representation of binary electrolyte solutions nonideality in the whole range of concentrations. AIChE J. 24, 817–830 (1978)

    Article  CAS  Google Scholar 

  12. Perisanu, S.: Correlation of activity coefficients of alkyl-ammonium salt solutions. J. Mol. Liq. 113, 21–27 (2004)

    Article  CAS  Google Scholar 

  13. Amado, E., Blanco, L.H.: Isopiestic determination of the osmotic and activity coefficients of aqueous solutions of symmetrical and unsymmetrical quaternary ammonium bromides at T = (283.15 and 288.15) K. J. Chem. Eng. Data 54, 2696–2700 (2009)

    Article  CAS  Google Scholar 

  14. Blanco, L.H., Amado, E., Avellaneda, J.A.: Isopiestic determination of the osmotic and activity coefficients of dilute aqueous solutions of the series MeEt3NI to HepEt3NI at 298.15 K. Fluid Phase Equil 249, 147–152 (2006)

    Article  CAS  Google Scholar 

  15. Amado-Gonzalez, E., Blanco, L.H.: Osmotic and activity coefficients of dilute aqueous solutions of unsymmetrical tetraalkylammonium iodides at 298.15 K. J. Chem. Eng. Data 57, 1044–1049 (2012)

    Article  CAS  Google Scholar 

  16. Golabiazar, R., Sadeghi, R.: Vapor pressure osmometry determination of the osmotic and activity coefficients of dilute aqueous solutions of symmetrical tetraalkyl ammonium halides at 308.15 K. J. Chem. Eng. Data 59, 76–81 (2014)

    Article  CAS  Google Scholar 

  17. Li, J., He, C., Peng, C., Liu, H., Hu, Y., Paricuad, P.: Modeling of the thermodynamic properties of aqueous ionic liquid solutions with an equation of state for square-well chain liquid with variable range. Ind. Eng. Chem. Res. 50, 7027–7040 (2011)

    Article  CAS  Google Scholar 

  18. Sander, B., Fredenslund, A., Rasmussen, P.: Calculation of vapor–liquid equilibria in mixed solvent/salt systems using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1171–1183 (1986)

    Article  CAS  Google Scholar 

  19. Sander, B., Rasmussen, P., Fredenslund, A.: Calculation of vapor–liquid equilibria in nitric acid–water–nitrate salt systems using an extended UNIQUAC equation. Chem. Eng. Sci. 41, 1185–1195 (1986)

    Article  CAS  Google Scholar 

  20. Thomsen, K.: Aqueous electrolytes: model parameters and process simulation. PhD thesis, Department of Chemical Engineering. Technical University of Denmark. http://www.phasediagram.dk/Thesis%20k%20thomsen%201997.pdf (1997). Accessed 31 Aug 2016

  21. Fowler, R.H., Guggenheim, E.A.: Statistical Thermodynamics: A Version of Statistical Mechanics for Students of Physics and Chemistry, 2nd edn. Cambridge University Press, Cambridge (1949)

    Google Scholar 

  22. Abrams, D.S., Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 21, 116–128 (1975)

    Article  CAS  Google Scholar 

  23. Lindenbaum, S., Boyd, G.E.: Osmotic and sctivity coefficients for the symmetrical tetraalkyl ammonium halides in aqueous solution at 25°. J. Phys. Chem. 68, 911–917 (1964)

    Article  CAS  Google Scholar 

  24. Blanco, L.H., Amado, G.E., Calvo, J.C.: Osmotic and activity coefficients of dilute aqueous solutions of the series Me4NI to MeBu3NI at 298.15 K. Fluid Phase Equil. 268, 90–94 (2008)

    Article  CAS  Google Scholar 

  25. Bonner, O.D.: Osmotic and activity coefficients of methyl-substituted ammonium chlorides. J. Chem. Soc. Faraday Trans. I 77, 2515–2518 (1981)

    Article  CAS  Google Scholar 

  26. Macaskill, J.B., Bates, R.: Osmotic and activity coefficients of monomethyl-, dimethyl-, and trimethylammonium chlorides at 25 °C. J. Solution Chem. 15, 323–330 (1986)

    Article  CAS  Google Scholar 

  27. Bonner, O.D.: Osmotic and activity coefficients of methyl-substituted ammonium nitrates at 298.15 K. J. Chem. Eng. Data 26, 148–149 (1981)

    Article  CAS  Google Scholar 

  28. Bonner, O.D.: The osmotic and activity coefficients of some salts having relatively large molar volumes. J. Chem. Eng. Data 21, 498–499 (1976)

    Article  CAS  Google Scholar 

  29. Bonner, O.D.: Osmotic and activity coefficients of methyl-substituted ammonium perchlorates at 298.15 K. J. Chem. Eng. Data 27, 62–64 (1982)

    Article  CAS  Google Scholar 

  30. Gregor, H.P., Rothenberg, M., Fine, N.: Molal activity coefficients of methane- and ethanesulfonic acids and their salts. J. Phys. Chem. 67, 1110–1112 (1963)

    Article  CAS  Google Scholar 

  31. Chen, C.C.: Local composition model for excess Gibbs energy of electrolyte systems. part I: single solvent, single completely dissociated electrolyte systems. AIChE J. 28, 588–596 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Dehghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, V., Dehghani, M.R., Borhani, T.N.G. et al. Activity Coefficient Modelling of Aqueous Solutions of Alkyl Ammonium Salts using the Extended UNIQUAC Model. J Solution Chem 45, 1434–1452 (2016). https://doi.org/10.1007/s10953-016-0510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0510-x

Keywords

Navigation