Skip to main content
Log in

In-situ synthesis of hierarchical lamellar ZSM-5 zeolite with enhanced MTP catalytic performance by a facile seed-assisted method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A seed-assisted route has been applied to prepare the hierarchical lamellar ZSM-5 zeolite with good porosity and catalytic performance in methanol to propylene (MTP) reaction. In this method, ZSM-5 crystal seeds instead of organic quaternary ammonium were used to direct the formation of ZSM-5 nuclei and conventional surfactant cetyltrimethylammonium bromide (CTAB) employed as the mesoporogen. The process for the formation of hierarchical lamellar ZSM-5, including the effect of the ratio of CTAB/SiO2, initial gel aging temperature, synthesis temperature and synthesis time were discussed in detail. The results suggested that mesoporous structure was first obtained and then transformed into MFI structure in-situ during the hydrothermal synthesis process. The obtained hierarchical lamellar ZSM-5 zeolite displays an organized flack-like nanosheet stacks morphology with regular intercrystal mesopores of 3–7 nm, possessing large surface area and mesopore volume. Moreover, the synthesized hierarchical ZSM-5 zeolite has perfect catalyst lifetime in methanol to propylene (MTP) reaction than conventional microporous ZSM-5 zeolite, which could be ascribed to the hierarchical mesoporous structure accommodating more bulky molecules and accessible acid sites in the catalytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Martínez, A. Corma, Coordin. Chem. Rev. 255, 1558–1580 (2011)

    Article  Google Scholar 

  2. B. Qiu, F. Jiang, W. Lu, B. Yan, W. Li, Z. Zhao, A. Lu, J. Catal. 385, 176–182 (2020)

    Article  CAS  Google Scholar 

  3. Y. Sang, H. Li, J. Solid State Chem. 271, 326–333 (2019)

    Article  CAS  Google Scholar 

  4. L. Tosheva, V.P. Valtchev, Chem Mater. 17, 2494–2513 (2005)

    Article  CAS  Google Scholar 

  5. G.A. Tompsett, W.C. Conner, K.S. Yngvesson, Chem. Phys. Chem. 7, 296–319 (2006)

    Article  CAS  Google Scholar 

  6. C.T. Kresge, M.E. Leonowicz, W.J. Roth, Nature 359, 710–714 (1992)

    Article  CAS  Google Scholar 

  7. A.L. Figueiredo, A.S. Araujo, M. Linares, Á. Peral, R.A. García, D.P. Serrano, V.J. Fernandes Jr., J. Anal. Appl. Pyrol. 117, 132–140 (2016)

    Article  CAS  Google Scholar 

  8. J. Yu, J.L. Shi, H.R. Chen, J. Yan, D. Yan,Micropor. Mesopor. Mater. 46, 153–162 (2001)

    Article  CAS  Google Scholar 

  9. R. Sabarish, G. Unnikrishnan, J. Porous Mater. (2020). https://doi.org/10.1007/s10934-019-00852-5

    Article  Google Scholar 

  10. A. Bolshakov, R. Poll, T. Bergen-Brenkman, S.C.C. Wiedemann, N. Kosinov, E.J.M. Hensen, Appl. Catal. B Environ. 263, 1–10 (2020)

    Article  Google Scholar 

  11. K. Zhang, Z. Liu, X. Yan, X. Hao, M. Wang, C. Li, H. Xi, Langmuir 33, 14396–14404 (2017)

    Article  CAS  Google Scholar 

  12. M.S.M. Kamil, K.K. Cheralathan, J Porous Mat (2020). https://doi.org/10.1007/s10934-019-00839-2

    Article  Google Scholar 

  13. G.T. Neumann, J.C. Hicks, Cryst. Growth. Des. 13, 1535–1542 (2013)

    Article  CAS  Google Scholar 

  14. Y. Wang, K. Liu, T. He, J. Wu, Y. Fang, J. Solid State Chem. 194, 416–421 (2012)

    Article  CAS  Google Scholar 

  15. A. Feng, Y. Yu, L. Mi, Y. Cao, Y. Yu, L. Song, Micropor. Mesopor. Mater. 280, 211–218 (2019)

    Article  CAS  Google Scholar 

  16. Y. Jiao, L. Forster, S. Xu, H. Chen, J. Han, X. Liu, Y. Zhou, J. Liu, J. Zhang, J. Yu, C.D. Agostino, X. Fan, Angew. Chem. 132, 2–11 (2020)

    Article  Google Scholar 

  17. Y.S. Tao, H. Kanoh, K. Kaneko, J. Phys. Chem .107, 10974–10976 (2003)

    Article  CAS  Google Scholar 

  18. F.J. Liu, T. Willhammar, L. Wang, L. Zhu, Q. Sun, X. Meng, W. Cabrera, X. Zou, F. Xiao, J. Am. Chem. Soc. 134, 4557–4560 (2012)

    Article  CAS  Google Scholar 

  19. R. Barakov, N. Shcherban, P. Yaremov, I. Bezverkhyy, A. Baranchikov, V. Trachevskii, V. Tsyrina, V. Ilyin, Micropor. Mesopor. Mater. 237, 90–107 (2017)

    Article  CAS  Google Scholar 

  20. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 461, 246–249 (2009)

    Article  CAS  Google Scholar 

  21. D. Xu, Y. Ma, Z. Jing, L. Han, B. Singh, J. Feng, X. Shen, F. Cao, P. Oleynikov, H. Sun, O. Terasaki, S. Che, Nat. Commun. 4262, 1–9 (2014)

    Google Scholar 

  22. K. Zhang, C. Li, Z. Liu, M. Wang, X. Yan, H. Xi, Chem. Asian J. 20, 2711–2719 (2017)

    Article  Google Scholar 

  23. Y. Liu, W. Zhang, T.J. Pinnavaia, Angew. Chem. Int. Ed. 40, 1255–1258 (2001)

    Article  CAS  Google Scholar 

  24. K.S. Triantafyllidis, E.F. Iliopoulo, E.V. Antonakou, A. Lappas, H. Wang, T. Pinnavaiac, J. Micropor. Mesopor. Mater. 99, 132–139 (2007)

    Article  CAS  Google Scholar 

  25. M. Liu, J. Li, W. Jia, M. Qin, Y. Wang, K. Tong, H. Chen, Z. Zhu, RSC Adv. 5, 9237–9240 (2015)

    Article  CAS  Google Scholar 

  26. Y. Zhu, Z. Hua, J. Zhou, L. Wang, J. Zhao, Y. Gong, W. Wu, M. Ruan, J.L. Sh, Chem. Eur. 17, 14618–14627 (2011)

    Article  CAS  Google Scholar 

  27. M.L. Goncalves, L.D. Dimitrov, M.H. Jordao, M. Wallau, E.A. Urquieta-Gonzalez, Catal. Today 133–135, 69–79 (2008)

    Article  Google Scholar 

  28. T. Xue, H. Liu, Y. Zhang, H. Wu, P. Wu, M. He, Micropor. Mesopor. Mater. 242, 190–199 (2017)

    Article  CAS  Google Scholar 

  29. H. Chen, Y. Wang, F. Meng, C. Sun, H. Li, Z. Wang, F. Gao, X. Wang, S. Wang, Micropor. Mesopor. Mater. 244, 301–309 (2017)

    Article  CAS  Google Scholar 

  30. L. Meng, B. Mezari, M.G. Goesten, E.J.M. Hensen, Chem. Mater. 29, 4091–4096 (2017)

    Article  CAS  Google Scholar 

  31. L. Huang, X. Chen, Q. Li, J Mater. Chem. 11, 610–615 (2001)

    Article  CAS  Google Scholar 

  32. Q. Yu, X. Meng, J. Liu, C. Li, Q. Cui, Micropor. Mesopor. Mater. 181, 192–200 (2013)

    Article  CAS  Google Scholar 

  33. N. Katada, Y. Kageyama, M. Niwa, J. Phys. Chem. B 104, 7561–7564 (2000)

    Article  CAS  Google Scholar 

  34. M. Rostamizadeh, A. Taeb, J. Ind. Eng. Chem. 27, 297–306 (2015)

    Article  CAS  Google Scholar 

  35. C. Mei, P. Wen, Z. Liu, H. Liu, Y. Wang, W. Yang, Z. Xie, W. Hua, Z. Gao, J. Catal. 258, 243–249 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Project of Shandong Province Higher Educational Science and Technology Program (J18KB053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hong Chen or Qiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Han, DM., Zhang, Q. et al. In-situ synthesis of hierarchical lamellar ZSM-5 zeolite with enhanced MTP catalytic performance by a facile seed-assisted method. J Porous Mater 27, 1265–1275 (2020). https://doi.org/10.1007/s10934-020-00898-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00898-w

Keywords

Navigation