Skip to main content

Advertisement

Log in

A late glacial Antarctic climate teleconnection and variable Holocene seasonality at Lake Pupuke, Auckland, New Zealand

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We present the first continuous paleolimnological reconstruction from the North Island of New Zealand (37°S) that spans the last 48.2 cal kyr. A tephra- and radiocarbon-based chronology was developed to infer the timing of marked paleolimnological changes in Lake Pupuke, Auckland, New Zealand, identified using sedimentology, magnetic susceptibility, grain size and geochemistry (carbon, nitrogen and sulphur concentrations and fluxes, carbon and nitrogen stable isotopes). Variable erosional influx, biomass and benthic REDOX conditions are linked to changing effective precipitation and seasonality within three inferred broad intervals of climatic change: (1) the Last Glacial Coldest Phase (LGCP) of reduced effective precipitation and cooler temperatures, from 28.8 to 18.0 cal kyr BP, (2) the Last Glacial Interglacial Transition (LGIT) of increasing effective precipitation and warmer conditions, from 18.0 to 10.2 cal kyr BP, and (3) a Holocene interval of high effective precipitation, beginning with a warm period of limited seasonality from 10.2 cal kyr BP and followed by increasing seasonality from 7.6 cal kyr BP. The LGCP and LGIT also contain millennial-scale climate events, including the coldest inferred glacial conditions during the LGCP from 27.8 to 26.0 and 22.0–19.0 cal kyr BP, and a climate reversal in the LGIT associated with lower lake level, from 14.5 to 13.8 cal kyr BP, coeval with the Antarctic Cold Reversal. The onset of seasonal thermal stratification occurred at 5.7 cal kyr BP and was linked to natural eutrophication of Lake Pupuke, which produced enhanced organic sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alloway B, Lowe D, Barrell D, Newnham R, Almond P, Augustinus P, Bertler N, Carter L, Litchfield N, McGlone M, Shulmeister J, Vandergoes M, Williams P, NZ-INTIMATE members (2007) Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). J Quat Sci 22:9–35

    Article  Google Scholar 

  • Anderson A (1991) The chronology of colonization in New Zealand. Antiquity 65:767–795

    Google Scholar 

  • Asikainen C, Francas P, Brigham-Grette J (2007) Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El’gygytgyn Crater Lake, Northeastern Siberia. J Paleolimnol 37:105–122

    Article  Google Scholar 

  • Augustinus P, Reid M, Andersson S, Deng Y, Horrocks M (2006) Biological and geochemical record of anthropogenic impacts in recent sediments from Lake Pupuke, Auckland City, New Zealand. J Paleolimnol 35:789–805

    Article  Google Scholar 

  • Augustinus P, Bleakley N, Deng Y, Shane P, Cochran U (2008) Rapid change in early Holocene environments inferred from Lake Pupuke, Auckland City, New Zealand. J Quat Sci 23:435–447

    Article  Google Scholar 

  • Augustinus P, D’Costa D, Deng Y, Hagg J, Shane P (2011) A multi-proxy record of changing environments from ca. 30,000 to 9000 cal a BP: Onepoto maar paleolake, Auckland, New Zealand. J Quat Sci 26:389–401

    Article  Google Scholar 

  • Avnimelech Y, Ritvo G, Meijer L, Kichba M (2001) Water content, organic carbon and dry bulk density in flooded sediments. Aquacult Eng 25:25–33

    Article  Google Scholar 

  • Barker M (1970) Physico-chemical features of Lake Pupuke, Auckland. NZ J Mar Fresh Res 4:406–430

    Article  Google Scholar 

  • Barrows T, Lehman S, Fifield L, De Deckker P (2007a) Absence of cooling in New Zealand and the adjacent ocean during the younger dryas chronozone. Science 318:86–89

    Article  Google Scholar 

  • Barrows T, Juggins S, De Deckker P, Calvo E, Pelejero C (2007b) Long-term sea surface temperature and climate change in the Australian–New Zealand region. Paleoceanography 22:PA2215. doi:1029/2006PA001328

    Article  Google Scholar 

  • Birks H, Birks H (2006) Multi-proxy studies in palaeolimnology. Veg Hist Archaebot 15:235–251

    Article  Google Scholar 

  • Cassie V (1989) Micro-algae of Lake Pupuke, Auckland, New Zealand. NZ Nat Sci 16:39–50

    Google Scholar 

  • Denton G, Hendy C (1994) Younger dryas age advance of Franz Josef glacier in the southern alps of New Zealand. Science 264:1434–1437

    Article  Google Scholar 

  • Denton G, Anderson R, Toggweiler J, Edwards R, Schaefer J, Putnam A (2010) The last glacial termination. Science 328:1652–1656

    Google Scholar 

  • Gale S, Hoare P (1991) Quaternary sediments. Belhaven Press, London, p 323

    Google Scholar 

  • Gomez B, Carter L, Rustrum N, Palmer A, Roberts A (2004) El Niño-Southern Oscillation signal associated with middle Holocene climate change in intercorrelated terrestrial and marine sediment cores, North Island, New Zealand. Geology 32:653–656

    Google Scholar 

  • Hajdas I, Lowe D, Newnham R, Bonani G (2006) Timing of the late-glacial climate reversal in the Southern Hemisphere using high-resolution radiocarbon chronology for the Kaipo bog, New Zealand. Quat Res 65:340–345

    Article  Google Scholar 

  • Hall C, York D (1984) The applicability of 40Ar/39Ar dating to young volcanics. In: Mahaney W (ed) Quaternary dating methods. Elsevier, Amsterdam, pp 67–74

    Chapter  Google Scholar 

  • Heegaard E (2003) Age-depth routine for R. http://www.bio.uu.nl/Bpalaeo/Congressen/Holivar/Literature Holivar2003.htm

  • Hoek W, Yu Z, Lowe J (2008) INTegration of Ice-core, MArine, and TErrestrial records (INTIMATE): refining the record of the Last Glacial-Interglacial Transition. Quat Sci Rev 27:1–5

    Article  Google Scholar 

  • Holmes C (1994) Aspects of the limnology of Lake Pupuke with special reference to the phytoplankton. MSc thesis, University of Auckland, p 165

  • Horrocks M, Augustinus P, Deng Y, Shane P, Andersson S (2005) Holocene vegetation, environment, and tephra recorded from Lake Pupuke, Auckland, New Zealand. NZ Geol Geophys 48:85–94

    Article  Google Scholar 

  • Lamy F, Kaiser J, Ninnemann U, Hebbeln D, Arz H, Stoner J (2004) Antarctic timing of surface water off Chile and Patagonian Ice Sheet response. Science 304:1959–1962

    Article  Google Scholar 

  • Lancashire A, Flenley J, Harper M (2002) Late Glacial beech forest: an 18,000–5,000-BP pollen record from Auckland, New Zealand. Glob Plan Chang 33:315–327

    Article  Google Scholar 

  • Leuenberger M, Siegenthaler U, Langway C (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357:488–490

    Article  Google Scholar 

  • Lorrey A, Fowler A, Salinger J (2007) Regional climate regime classification as a qualitative tool for interpreting multi-proxy palaeoclimatic data spatial patterns: a New Zealand case study. Palaeogeogr Palaeoclimatol Palaeoecol 253:407–433

    Article  Google Scholar 

  • Lowe D, Green J, Northcote T, Hall K (1997) Holocene fluctuations of a meromictic lake in southern British Columbia. Quat Res 48:100–113

    Article  Google Scholar 

  • Lowe D, Shane P, Alloway B, Newnham R (2008) Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE. Quat Sci Rev 27:95–126

    Article  Google Scholar 

  • McCormac F, Hogg A, Blackwell P, Buck C, Higham T, Reimer P (2004) SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46:1087–1092

    Google Scholar 

  • McGlone M, Turney C, Wilmshurst J, Renwick J, Pahnke K (2010) Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years. Nature Geosci 3:622–626

    Article  Google Scholar 

  • Menounos B (1997) The water content of lake sediments and its relationship to other physical parameters: an alpine case study. Holocene 7:207–212

    Article  Google Scholar 

  • Meyers P, Horie S (1993) An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeogr Palaeoclimatol Palaeoecol 105:171–178

    Article  Google Scholar 

  • Meyers P, Lallier-Vergés E (1999) Lacustrine sedimentary organic matter records of the Late Quaternary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  • Meyers P, Teranes J (2001) Sediment organic matter. In: Last W, Smol J (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer, Dordrecht, pp 239–269

    Google Scholar 

  • Molloy C, Shane P, Augustinus P (2009) Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: implications for hazards in the Auckland volcanic field. Geol Soc Am Bull 121:1666–1677

    Article  Google Scholar 

  • Needham A, Lindsay J, Smith I, Augustinus P, Shane P (2010) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 201:126–142

    Article  Google Scholar 

  • Newnham R, Lowe D (1991) Holocene vegetation and volcanic activity, Auckland isthmus, New Zealand. J Quat Sci 6:177–193

    Article  Google Scholar 

  • Newnham R, de Lange P, Lowe D (1995) Holocene vegetation, climate, and history of a raised bog complex, northern New Zealand, based on palynology, plant macrosfossils and tephrochronology. Holocene 5:267–282

    Article  Google Scholar 

  • Newnham R, Vandergoes M, Hendy C, Lowe D, Preusser F (2007a) A terrestrial palynological record for the last two glacial cycles from southwestern New Zealand. Quat Sci Rev 26:517–535

    Article  Google Scholar 

  • Newnham R, Lowe D, Giles T, Alloway B (2007b) Vegetation and climate of Auckland, New Zealand, since ca. 32 000 cal yr ago: support for an extended LGM. J Quat Sci 22:517–534

    Article  Google Scholar 

  • Nowaczyk N, Melles M, Minyuk P (2007) A revised age model for core PG1351 from Lake El’gygytgyn, Chukotka, based on magnetic susceptibility variations tuned to northern hemisphere insolation variations. J Paleolimnol 37:65–76

    Article  Google Scholar 

  • Pepper A, Shulmeister J, Nobes D, Augustinus P (2004) Possible ENSO signals prior to the Last Glacial Maximum, during the last deglaciation and the early Holocene, from New Zealand. Geophys Res Lett 31:L15206

    Article  Google Scholar 

  • Putnam A, Denton G, Schaefer J, Barrell D, Andersen B, Finkel R, Schwartz R, Doughty A, Kaplan M, Schluchter C (2010) Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nature Geosci 3:700–704

    Article  Google Scholar 

  • Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org

  • Reimer P, Baillie M, Bard E, Bayliss A, Beck J, Blackwell P, Ramsey C, Buck C, Burr G, Edwards R, Friedrich M, Grootes P, Guilderson T, Hajdas I, Heaton T, Hogg A, Hughen K, Kaiser K, Kromer B, McCormac F, Manning S, Reimer R, Richards D, Southon J, Talamo S, Turney C, van der Plicht J, Weyhenmeye C (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    Google Scholar 

  • Salinger M, Renwick J, Mullan A (2001) Interdecadal Pacific Oscillation and South Pacific climate. Int J Climatol 21:1705–1721

    Article  Google Scholar 

  • Salter P, Russell W, and Jenkins I (2005) Lake Pupuke catchment groundwater nutrient investigation. URS draft report prepared for North Shore City Council, pp 1–95

  • Sandgren P, Snowball I (2001) Application of mineral magnetic techniques to paleolimnology. In: Last W, Smol J (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer, Dordrecht, pp 217–237

    Google Scholar 

  • Sandiford A, Newnham R, Alloway B, Ogden J (2003) A 28000–7600 cal yr BP pollen record of vegetation and climate change from Pukaki Crater, northern New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 201:235–247

    Article  Google Scholar 

  • Schaefer J, Denton G, Kaplan M, Putnam A, Finkel R, Barrell D, Andersen B, Schwartz R, Mackintosh A, Chinn T, Schluchter C (2009) High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324:622–625

    Article  Google Scholar 

  • Searle E (1981) City of volcanoes: a geology of Auckland. Longman Paul Ltd, Auckland

    Google Scholar 

  • Shane P (2005) Towards a comprehensive distal andesitic tephrostratigraphic framework for New Zealand based on eruptions from Egmont volcano. J Quat Sci 20:45–57

    Article  Google Scholar 

  • Shane P, Sandiford A (2003) Paleovegetation of marine isotope stages 4 and 3 in Northern New Zealand and the age of the widespread Rotoehu tephra. Quat Res 59:420–429

    Google Scholar 

  • Shulmeister J, Goodwin I, Renwick J, Harle K, Armand L, McGlone M, Cook E, Dodson J, Hesse P, Mayewski P, Curran M (2004) The Southern Hemisphere westerlies in the Australasian sector over the last glacial cycle: a synthesis. Quat Int 118–119:23–53

    Article  Google Scholar 

  • Shulmeister J, Rodbell D, Gagan M, Seltzer G (2006) Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change. Clim Past Discuss 2:79–122

    Article  Google Scholar 

  • Shulmeister J, Fink D, Hyatt O, Thackray G, Rother H (2010) Cosmogenic 10Be and 26Al exposure ages of moraines in the Rakaia Valley, New Zealand and the nature of the last termination in New Zealand glacial systems. Earth Planet Sci Lett 297:558–566

    Article  Google Scholar 

  • Street-Perrott F, Ficken K, Huang Y, Eglinton G (2004) Late Quaternary changes in carbon cycling on Mt. Kenya, East Africa: an overview of the δ13C record in lacustrine organic matter. Quat Sci Rev 23:861–879

    Article  Google Scholar 

  • Striewski B, Mayr C, Flenley J, Naumann R, Turner G, Lucke A (2009) Multi-proxy evidence of late Holocene human-induced environmental changes at Lake Pupuke, Auckland (New Zealand). Quat Int 202:69–93

    Article  Google Scholar 

  • Talbot M (2001) Nitrogen isotopes in palaeolimnology. In: Last W, Smol J (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer, Dordrecht, pp 401–439

    Google Scholar 

  • Turney C, Haberle S, Fink D, Kershaw A, Barbetti M, Barrows T, Black M, Cohen T, Correge T, Hesse P, Hua Q, Johnston R, Morgan V, Moss P, Nanson G, Van Ommen T, Rule S, Williams N, Zhao J, D’Costa D, Feng Y, Gagan M, Mooney S, Xia Q (2006) Integration of ice-core, marine and terrestrial records for the Australian Last Glacial Maximum and Termination: a contribution from the OZ INTIMATE group. J Quat Sci 21:751–761

    Article  Google Scholar 

  • Vandergoes M, Dieffenbacher-Krall A, Newnham R, Denton G, Blaauw M (2008) Cooling and changing seasonality in the Southern Alps, New Zealand during the Antarctic Cold Reversal. Quat Sci Rev 27:589–601

    Article  Google Scholar 

  • Walker M, Johnsen S, Rasmussen S, Popp T, Steffensen J, Gibbard P, Hoek W, Lowe J, Andrews J, Björck S, Cwynar L, Hughen K, Kershaw P, Kromer B, Litt T, Lowe D, Nakagawa T, Newnham R, Schwander J (2009) Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J Quat Sci 24:3–17

    Article  Google Scholar 

  • Werne J, Lyons T, Hollander D, Formolo M, Sinninghe-Damsté J (2003) Reduced sulphur in euxinic sediments of the Cariaco Basin: sulphur isotope constraints on organic sulphur formation. Chem Geol 195:159–179

    Article  Google Scholar 

  • Wilson C, Rhoades D, Lanphere M, Calvert A, Houghton B, Weaver S, Cole J (2007) A multiple-approach radiometric age estimate for the Rotoiti and earthquake flat eruptions, New Zealand, with implications for the MIS 4/3 boundary. Quat Sci Rev 26:1861–1870

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Royal Society of New Zealand Marsden Fund (Project UOA-0517) and Natural Environment Research Council grant (Project IP/995/1107). We would like to thank Peter Crossley, Brendan Hall, Dave Wackrow, David Jenkinson, Hiroki Ogawa and Aleksandra Zawalna-Geer for their expertise and assistance during fieldwork. Two anonymous reviewers, Mark Brenner and Thomas Whitmore are also thanked for their revisions that have helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stephens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 6,122 kb)

Supplementary material 2 (EPS 909 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephens, T., Atkin, D., Augustinus, P. et al. A late glacial Antarctic climate teleconnection and variable Holocene seasonality at Lake Pupuke, Auckland, New Zealand. J Paleolimnol 48, 785–800 (2012). https://doi.org/10.1007/s10933-012-9644-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-012-9644-z

Keywords

Navigation