Skip to main content
Log in

A model for inferring dissolved organic carbon (DOC) in lakewater from visible-near-infrared spectroscopy (VNIRS) measures in lake sediment

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We developed an inference model to infer dissolved organic carbon (DOC) in lakewater from lake sediments using visible-near-infrared spectroscopy (VNIRS). The inference model used surface sediment samples collected from 160 Arctic Canada lakes, covering broad latitudinal (60–83°N), longitudinal (71–138°W) and environmental gradients, with a DOC range of 0.6–39.6 mg L−1. The model was applied to Holocene lake sediment cores from Sweden and Canada and our inferences are compared to results from previous multiproxy paleolimnological investigations at these two sites. The inferred Swedish and Canadian DOC profiles are compared, respectively, to inferences from a Swedish-based VNIRS-total organic carbon (TOC) model and a Canadian-based diatom-inferred (Di-DOC) model from the same sediment records. The 5-component Partial Least Squares (PLS) model yields a cross-validated (CV) \( R_{CV}^{2} \) = 0.61 and a root mean squared error of prediction (RMSEP CV ) = 4.4 mg L−1 (11% of DOC gradient). The trends inferred for the two lakes were remarkably similar to the VNIRS-TOC and the Di-DOC inferred profiles and consistent with the other paleolimnological proxies, although absolute values differed. Differences in the calibration set gradients and lack of analogous VNIRS signatures in the modern datasets may explain this discrepancy. Our results corroborate previous geographically independent studies on the potential of using VNIRS to reconstruct past trends in lakewater DOC concentrations rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot 15:235–251

    Article  Google Scholar 

  • CAVM Team (2003) Circumpolar arctic vegetation map. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1 [map]. 1:7,500,000. US Fish and Wildlife Service, Anchorage, USA

  • Cole JJ, Prairie YT, Caraco NF, Mcdowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

    Article  Google Scholar 

  • Côté G, Pienitz R, Velle G, Wang X (2010) Impact of Geese on the Limnology of Lakes and Ponds from Bylot Island (Nunavut, Canada). Intern Rev Hydrobiol 95:105–129

    Article  Google Scholar 

  • Cunningham L, Bishop K, Mettävainio E, Rosén P (2011) Paleoecological evidence of major declines in total organic carbon concentrations since the nineteenth century in four nemoboreal lakes. J Paleolimnol 45:507–518

    Google Scholar 

  • Curtis CJ, Juggins S, Clarke G, Battarbee R, Kernan M, Catalan J, Thompson R, Posch M (2009) Regional influence of acid deposition and climate change in European mountain lakes assessed using diatom transfer functions. Freshw Biol 54:2555–2572

    Article  Google Scholar 

  • den Heyer C, Kalff J (1998) Organic matter mineralization rates in sediments: a within-and among-lake study. Limnol Oceanogr 43:695–705

    Article  Google Scholar 

  • Douglas MSV, Smol JP (1994) Limnology of high arctic ponds (Cape Herschel, Ellesmere Island, N.W.T). Arch Hydrobiol 131:401–434

    Google Scholar 

  • Ecological Working Group (2002) The State of Canada’s ecosystems in maps [map]. 1:2,500,000. Ecological Mapping Analysis and Protocols, Government of Canada, Ottawa, Canada

  • Environment Canada (1979) Analytical methods manual. Inland Waters Directorate, Water Quality Branch, Ottawa, Canada

  • Environment Canada (1994a) Manual for analytical methods, vol 1-major ions and nutrients. National Laboratory for Environmental Testing, Canadian Centre for Inland Waters, Burlington

    Google Scholar 

  • Environment Canada (1994b) Manual for analytical methods, vol 2-trace metals. National Laboratory for Environmental Testing, Canadian Centre for Inland Waters, Burlington

    Google Scholar 

  • Fallu M, Pienitz R (1999) Diatomées lacustres de Jamésie-Hudsonie (Québec) et modèle de reconstitution des concentrations de carbone organique dissous. Écoscience 6:603–620

    Google Scholar 

  • Frey KE, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23:169–182

    Article  Google Scholar 

  • Geladi P, Macdougall D, Martens H (1985) Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl Spectrosc 39:491–500

    Article  Google Scholar 

  • GeoBase (2007) National hydro Network (NHN) [web database]. 1:50,000. Centre for Topographic Information, Geomatics Canada, Earth Sciences Sector, Natural Resources Canada, Sherbrooke, Canada

  • Geological Survey of Canada (GSC) (1973) Surface Materials [map]. 1:15,000,000. The National Atlas of Canada. Surveys and Mapping Branch, Department of Energy, Mines and Resources, Ottawa, Canada, pp 37–38

  • Geological Survey of Canada (GSC) (2002a) Canadian peatland database [web database]. 1:6,500,000. Earth Sciences Sector, Terrain Sciences Division, Natural Resources Canada, Ottawa, Canada

  • Geological Survey of Canada (GSC) (2002b) Canadian permafrost thickness [web database]. Earth Sciences Sector, Natural Resources Canada, Ottawa

    Google Scholar 

  • Jansson M, Hickler T, Jonsson A, Karlsson J (2008) Links between terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden. Ecosystems 11:367–376

    Article  Google Scholar 

  • Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–509

    Article  Google Scholar 

  • Keatley BE, Douglas MSV, Smol JP (2007a) Limnological characteristics of a high arctic oasis and comparisons across northern Ellesmere Island. Arctic 60:294–308

    Google Scholar 

  • Keatley BE, Douglas MSV, Smol JP (2007b) Physical and chemical limnological characteristics of lakes and ponds across environmental gradients on Melville Island, Nunavut/NWT, High Arctic Canada. Fundam Appl Limnol 168:355–376

    Article  Google Scholar 

  • Kokelj S, Jenkins R, Milburn D, Burn C, Snow N (2005) The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta Region, Northwest Territories, Canada. Permafr Periglac Process 16:343–353

    Article  Google Scholar 

  • Kokfelt U, Rosén P, Schoning K, Christensen T, Förster J, Karlsson J, Reuss N, Rundgren M, Callaghan T, Jonasson C, Hammarlund D (2009) Ecosystem responses to increased precipitation and permafrost decay in sub-arctic Sweden inferred from peat and lake sediments. Glob Chang Biol 15:1652–1663

    Article  Google Scholar 

  • Korsman T, Nilsson M, Ohman J, Renberg I (1992) Near-infrared reflectance spectroscopy of sediments—a potential method to infer the past pH of lakes. Environ Sci Technol 26:2122–2126

    Article  Google Scholar 

  • Korsman T, Renberg I, Dabakk E, Nilsson MB (2001) Near-infrared spectrometry (NIRS) in palaeolimnology. In: Last WM, Smol JP (eds) Physical and geochemical methods. Kluwer, Dordrecht, pp 299–317

    Google Scholar 

  • Leavitt P, Cumming BF, Smol JP, Reasoner M, Pienitz R, Hodgson D (2003) Climatic control of ultraviolet radiation effects on lakes. Limnol Oceanogr 48:2062–2069

    Article  Google Scholar 

  • Lim DSS, Douglas MSV (2003) Limnological characteristics of 22 lakes and ponds in the Haughton Crater region of Devon Island, Nunavut, Canadian High Arctic. Arct Antarct Alp Res 35:509–519

    Article  Google Scholar 

  • Lim DSS, Douglas MSV, Smol JP, Lean DRS (2001) Physical and chemical limnological characteristics of 38 lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic. Int Rev Hydrobiol 86:1–22

    Article  Google Scholar 

  • Lim DSS, Douglas MSV, Smol JPS (2005) Limnology of 46 lakes and ponds on Banks Island, NWT, Canadian Arctic Archipelago. Hydrobiologia 545:11–32

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Lean DRS, Smol JP (2002a) Physical and chemical limnology of 34 ultra-oligotrophic lakes and ponds near Wynniatt Bay, Victoria Island, Arctic Canada. Hydrobiologia 482:1–13

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Muir D, Wang X, Smol JP (2002b) Limnological characteristics of 38 lakes and ponds on Axel Heiberg Island, High Arctic Canada. Int Rev Hydrobiol 87:385–399

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Wolfe AP, Smol JP (2006) Heightened sensitivity of a poorly buffered high arctic lake to late-Holocene climatic change. Quat Res 65:421–430

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2007) Evaluating diatom community composition in the absence of marked limnological gradients in the high Arctic: a surface sediment calibration set from Cornwallis Island (Nunavut, Canada). Polar Biol 30:1459–1473

    Article  Google Scholar 

  • Michelutti N, Blais JM, Cumming BF, Paterson AM, Rühland KM, Wolfe AP, Smol JP (2010) Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? J Paleolimnol 43:205–217

    Article  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    Article  Google Scholar 

  • Pienitz R, Smol JP (1993) Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest-Territories, Canada. Hydrobiologia 269:391–404

    Article  Google Scholar 

  • Pienitz R, Smol JP, Lean DRS (1997a) Physical and chemical limnology of 24 lakes located between Yellowknife and Contwoyto Lake, Northwest Territories (Canada). Can J Fish Aquat Sci 54:347–358

    Article  Google Scholar 

  • Pienitz R, Smol JP, Lean DRS (1997b) Physical and chemical limnology of 59 lakes located between the southern Yukon and the Tuktoyaktuk Peninsula, Northwest Territories (Canada). Can J Fish Aquat Sci 54:330–346

    Google Scholar 

  • Pienitz R, Smol JP, Macdonald GM (1999) Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arct Antarct Alp Res 31:82–93

    Article  Google Scholar 

  • Reuss NS, Hammarlund D, Rundgren M, Segerström U, Eriksson L, Rosén P (2010) Lake ecosystem responses to Holocene climate change at the subarctic tree-line in Northern Sweden. Ecosystems 13:393–409

    Article  Google Scholar 

  • Rinnan R, Michelsen A, Jonasson S (2008) Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem. Appl Soil Ecol 39:271–281

    Article  Google Scholar 

  • Rosén P (2005) Total organic carbon (TOC) of lake water during the Holocene inferred from lake sediments and near-infrared spectroscopy (NIRS) in eight lakes from northern Sweden. Biogeochemistry 76:503–516

    Article  Google Scholar 

  • Rosén P, Hammarlund D (2007) Effects of climate, fire and vegetation development on Holocene changes in total organic carbon concentration in three boreal forest lakes in northern Sweden. Biogeosciences 4:975–984

    Article  Google Scholar 

  • Rosén P, Persson P (2006) Fourier-transform infrared spectroscopy (FTIRS), a new method to infer past changes in tree-line position and TOC using lake sediment. J Paleolimnol 35:913–923

    Article  Google Scholar 

  • Rosén P, Hall R, Korsman T, Renberg I (2000a) Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. J Paleolimnol 24:109–123

    Article  Google Scholar 

  • Rosén P, Dabakk E, Renberg I, Nilsson M, Hall R (2000b) Near-infrared spectrometry (NIRS): a new tool for inferring past climatic changes from lake sediments. Holocene 10:161–166

    Article  Google Scholar 

  • Rosén P, Segerström U, Eriksson L, Renberg I, Birks HJB (2001) Holocene climatic change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjljaure) in northern Sweden. Holocene 11:551–562

    Article  Google Scholar 

  • Rosén P, Segerström U, Eriksson L, Renberg I (2003) Do diatom, chironomid, and pollen records consistently infer Holocene July air temperature? A comparison using sediment cores from four alpine lakes in northern Sweden. Arct Antarct Alp Res 35:279–290

    Article  Google Scholar 

  • Rosén P, Vogel H, Cunningham L, Reuss N, Conley DJ, Persson P (2010) Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. J Paleolimnol 43:247–259

    Article  Google Scholar 

  • Rühland KM (2001) Diatom Assemblage shifts relative to changes in environmental and climatic conditions in the circumpolar treeline regions of the Canadian and Siberian Arctic. PhD thesis, Department of Biology, Queen’s University, pp 124–150

  • Rühland KM, Smol JP (2002) Freshwater diatoms from the Canadian Arctic treeline and development of paleolimnological inference models. J Phycol 38:249–264

    Article  Google Scholar 

  • Rühland KM, Smol JP (2005) Diatom shifts as evidence for recent subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 226:1–16

    Article  Google Scholar 

  • Soil Landscapes of Canada Working Group (2006) Soil landscapes of Canada, v3.1 [map]. 1:1,000,000. Agriculture and Agri-Food Canada, Ottawa, Canada

  • Sweetman JN, Laface E, Rühland KM, Smol JP (2008) Evaluating the response of cladocera to recent environmental changes in lakes from the Central Canadian Arctic treeline region. Arct Antarct Alp Res 40:584–591

    Article  Google Scholar 

  • Thorsteinsson R, Tozer ET (1970) Geology of the Arctic Archipelago. In: Douglas, RJW (ed) Geology and economic minerals of Canada. Geological Survey of Canada, Economic Geology Report, Ottawa, pp 547–590

  • Vincent WF, Laybourn-Parry J (2008) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This study was funded by the NSERC (Ottawa, Canada), CIRC, Umeå University and through the CGS-MSFSS program. We thank J. Thienpont, M. Pisaric and S. Kokelj for providing the Inuvik sediments, as well as the many field crews who assisted in various sampling programs. We also thank K. Rühland for sharing data and knowledge on Slipper Lake, A. Holmgren for her help with the VNIRS analyses in Umeå, C. Grooms for his technical assistance, N. Michelutti and the PEARL, CEN, CIRC and EMG research groups for their support, as well as B. F. Cumming and S. Lamoureux and two anonymous reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Rouillard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouillard, A., Rosén, P., Douglas, M.S.V. et al. A model for inferring dissolved organic carbon (DOC) in lakewater from visible-near-infrared spectroscopy (VNIRS) measures in lake sediment. J Paleolimnol 46, 187–202 (2011). https://doi.org/10.1007/s10933-011-9527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-011-9527-8

Keywords

Navigation