Skip to main content

Advertisement

Log in

Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We studied multiple variables in a sediment core from Lake Kipojärvi, northern Finland, to investigate Holocene ecosystem changes in relation to catchment characteristics and known climate variations. We focused on a forested catchment because previous paleolimnological studies conducted in Fennoscandia focused mainly on subarctic lakes within a range of shifting treeline(s). Data on aquatic macrophytes, diatoms, Cladocera, C:N ratio, organic matter (LOI) and regional vegetation (pollen), revealed a three-phase limnological development. The early Holocene, species-rich, mesotrophic lake was transformed into an oligotrophic, species-poor aquatic ecosystem by the early middle Holocene, ca. 7,500 cal years BP, earlier than has generally been reported. The transition involved considerable changes in aquatic macrophytes. Changes in the Cladocera and diatom communities appear to have been linked to aquatic macrophyte development, which in turn, was probably regulated by catchment development and hydrology, and a consequent decrease in nutrient input from the catchment. During the more humid late Holocene, surface flow from the catchment probably increased, but the lake’s nutrient status remained oligotrophic. Possible reasons for low nutrient concentration in the late Holocene include: 1) slower biogeochemical cycling due to cooler climate, 2) a new hydrologic outlet and associated shorter water-retention times, and 3) accelerated peatland development in the catchment that affected water flow patterns and nutrient cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnekow L (2000) Holocene regional and local vegetation history and lake-level changes in the Torneträsk area, northern Sweden. J Paleolimnol 23:399–420

    Article  Google Scholar 

  • Bennett K (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  • Birks HH (2000) Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-holocene. J Paleolimnol 23:7–19

    Article  Google Scholar 

  • Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London

    Google Scholar 

  • Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-holocene—a synthesis. J Paleolimnol 23:91–114

    Article  Google Scholar 

  • Bjerring R, Becares E, Declerck S, Gross EM, Hansson L-A, Kairesalo T, Nykänen M, Halkiewicz A, Kornijow R, Conde-Porcuna JM, Seferlis M, Nöges T, Moss B, Amsinck SL, Odgaard BV, Jeppesen E (2009) Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshwat Biol 54:2401–2417

    Article  Google Scholar 

  • Brodersen KP, Whiteside MC, Lindegaard C (1998) Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Can J Fish Aquat Sci 55:1093–1103

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Coops H (2002) Ecology of charophytes: an introduction. Aquat Bot 72:205–208

    Article  Google Scholar 

  • Davidson T, Sayer C, Perrow M, Bramm M, Jeppesen E (2007) Are the controls of species composition similar for contemporary and sub-fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. J Paleolimnol 38:117–134

    Article  Google Scholar 

  • de Eyto E, Irvine K, Garcia-Criado F, Gyllström M, Jeppesen E, Kornijow R, Miracle MR, Nykänen M, Bareiss C, Cerbin S, Salujõe J, Franken R, Stephens D, Moss B (2003) The distribution of chydorids (Branchiopoda, Anomopoda) in European shallow lakes and its application to ecological quality monitoring. Arch Hydrobiol 156:181–202

    Article  Google Scholar 

  • Denys L (1990) Fragilaria blooms in the holocene of the western coastal plain of Belgia. In: Simola H (ed) Proceedings of the tenth international diatom symposium, Joensuu, Finland, 28th August–2nd September 1988. Koeltz Scientific Books, Koenigstein, pp 397–406

  • Dodson SI, Arnott SE, Cottingham KL (2000) The relationship in lake communities between productivity and species richness. Ecology 81:2662–2679

    Article  Google Scholar 

  • Fægri K, Iversen J (1989) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Forsberg C (1992) Will an increased greenhouse impact in Fennoscandia give rise to more humic and colored lakes? Hydrobiologia 229:51–58

    Article  Google Scholar 

  • Hannon GE, Gaillard M-J (1997) The plant-macrofossil record of past lake-level changes. J Paleolimnol 18:15–28

    Article  Google Scholar 

  • Hessen DO, Gjessing EG, Knulst J, Fjeld E (1997) TOC fluctuations in a humic lake as related to catchment acidification, season and climate. Biogeochemistry 36:139–151

    Article  Google Scholar 

  • Hyvärinen H (1975) Absolute and relative pollen diagrams from northernmost Fennoscandia. Fennia 142:1–23

    Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342–343:151–164

    Article  Google Scholar 

  • Juggins S (2001) The European diatom database, user guide, version 1.0

  • Juggins S (2003) C2 user guide. Software for ecological and paleoecological data analysis and visualization. University of Newcastle, Newcastle Upon Tyne

  • Korhola A (1990) Paleolimnology and hydroseral development of the Kotasuo bog, Southern Finland, with special reference to the Cladocera. Ann Acad Sci Fenn A III 155:1–40

    Google Scholar 

  • Korhola A, Tikkanen M, Weckström J (2005) Quantification of the holocene lake-level changes in Finnish Lapland by means of a cladocera-lake depth transfer model. J Paleolimnol 34:175–190

    Article  Google Scholar 

  • Korhola A, Seppä H, Ruppel M, Väliranta M, Virtanen T, Weckström J (2010) The importance of northern peatland expansion to the late-holocene rise of atmospheric methane. Quat Sci Rev 29:611–617

    Article  Google Scholar 

  • Korsman T, Segerström U (1998) Forest fire and lake-water acidity in a northern Swedish boreal area: holocene changes in lake-water quality at Makkassjön. J Ecol 86:113–124

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol 2 (1–4). Gustav Fischer Verlag, Stuttgart/Jena

  • Lampinen R, Lahti T (2007) Kasviatlas 2006. Botanical Museum, Finnish Museum of Natural History. Helsinki. [Digital atlas of vascular plants in Finland at: http://www.luomus.fi/kasviatlas]

  • Lotter AF, Birks HJB (2003) The holocene paleolimnology of Sägistalsee and its environmental history—a synthesis. J Paleolimnol 30:333–342

    Article  Google Scholar 

  • Lotter AF, Juggins S (1991) PLOPROF, TRAN and ZONE. Programs for plotting, editing and zoning of pollen and diatom data. INQUA Commission for the study of the Holocene, Working Group on Data Handling Methods, Newsletter 6

  • Mattsson T (2010) Export of organic matter, sulfate and base cations from boreal headwater catchments downstream to the coast: impacts of land use and climate. Monograph Boreal Environ Res 36:1–45

    Google Scholar 

  • Økland KA, Økland J (2000) Freshwater bryozoans (Bryozoa) of Norway: distribution and ecology of Cristatella mucedo and Paludicella articulate. Hydrobiologia 421:1–24

    Article  Google Scholar 

  • Pienitz R, Smol JP, MacDonald GM (1999) Paleolimnological reconstruction of holocene climatic trends from two boreal treeline lakes, Northwest territories Canada. Arct Antarc Alp Res 31:82–93

    Article  Google Scholar 

  • Qualls RG, Richardson CJ (2003) Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62:197–229

    Article  Google Scholar 

  • Rintanen T (1976) Lake studies in eastern Finnish Lapland. I. Aquatic flora: Phanerogams and Charales. Ann Bot Fennici 13:137–148

    Google Scholar 

  • Rørslett B (1991) Principal determinants of aquatic macrophytes richness in northern European lakes. Aquat Bot 39:173–193

    Article  Google Scholar 

  • Rosén P, Segerström U, Eriksson L, Renberg I, Birks HJB (2001) Holocene climatic change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden. Holocene 11:551–562

    Article  Google Scholar 

  • Sandoy S, Nilssen JP (1986) A geographical survey of littoral crustacea in Norway and their use in paleolimnology. Hydrobiologia 143:277–286

    Article  Google Scholar 

  • Sarmaja-Korjonen K, Hyvärinen H (1999) Cladoceran and diatom stratigraphy of calcerous lake sediments from Kuusamo, NE Finland. Indications of holocene lake level changes. Fennia 177:55–70

    Google Scholar 

  • Sarmaja-Korjonen K, Nyman M, Kultti S, Väliranta M (2006) Palaeolimnological development of Lake Njargajavri, Northern Finnish Lapland, in a changing holocene climate and environment. J Paleolimnol 34:203–215

    Google Scholar 

  • Sayer C, Roberts N, Sadler J, David C, Wade PM (1999) Biodiversity changes in a shallow lake ecosystem: a multi-proxy palaeolimnological analysis. J Biogeogr 26:97–114

    Article  Google Scholar 

  • Seppä H (1998) Postglacial trends in palynological richness in the northern Fennoscandian tree-line area and their ecological interpretation. Holocene 8:43–53

    Article  Google Scholar 

  • Seppä H, Birks HJB (2001) July mean temperature and annual precipitation trends during the holocene in the Fennoscandian tree-line area: pollen-base climate reconstruction. Holocene 11:527–539

    Article  Google Scholar 

  • Seppä H, Hammarlund D (2000) Pollen-stratigraphical evidence of holocene hydrological change in northern Fennoscandia supported by independent isotopic data. J Paleolimnol 24:69–79

    Article  Google Scholar 

  • Seppä H, Hicks S (2006) Integration of modern and past pollen accumulation rate (PAR) records across the arctic tree-line: a method for more precise vegetation reconstructions. Quat Sci Rev 25:1501–1516

    Article  Google Scholar 

  • Seppä H, Weckström J (1999) Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake Tsuolbmajavri, Finland. Écoscience 6:621–635

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Ver Limnol 23:837–844

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie

    Google Scholar 

  • Tranvik LJ, Jansson M (2002) Climate change (Communication arising): terrestrial export of organic carbon. Nature 415:861–862

    Article  Google Scholar 

  • Vähätalo AV, Salonen K, Munster U, Järvinen M, Wetzel RG (2003) Photochemical transformation of allochthonous organic matter provides bioavailable nutrient in a humic lake. Arch Hydrobiol 156:287–314

    Article  Google Scholar 

  • Väliranta M (2006) Long-term changes in aquatic plant species composition in North-eastern European Russia and Finnish Lapland, as evidenced by plant macrofossil analysis. Aquat Bot 85:224–232

    Article  Google Scholar 

  • Väliranta M, Kultti S, Nyman M, Sarmaja-Korjonen K (2005) Holocene development of aquatic vegetation in a shallow Lake Njargajavri, Finnish Lapland with evidence of water level fluctuations and drying. J Paleolim 34:203–215

    Article  Google Scholar 

  • van Donk E, van de Bund WJ (2002) Impact of submerged macrophytes including charophytes on phyto and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72:261–274

    Article  Google Scholar 

  • Velle G, Larsen J, Eide W, Peglar S, Birks HJB (2005) Holocene environmental history and climate of Råtåsjøen, a low-alpine lake in south-central Norway. J Paleolimnol 33:129–153

    Article  Google Scholar 

  • Weckström J, Seppä H, Korhola A (2010) Climatic influence on peatland formation and lateral expansion dynamics in subarctic Fennoscandia. Boreas 39:761–769

    Article  Google Scholar 

  • Weckström J (2001) Assessment of diatoms as markers of environmental change in northern Fennoscandia. Unpublished Ph.D. dissertation, University of Helsinki, Helsinki

  • Wetzel R (2001) Limnology. Academic press, San Diego

    Google Scholar 

Download references

Acknowledgments

Funding was provided to MV and JW by the REBECCA-project, supported by the Helsinki University Environmental Research Centre (HERC) and the Academy of Finland. We gratefully acknowledge funding to SS from Arctic Doctoral Programme, Arctic Centre, University of Lapland. We warmly thank Mirjam Orvomaa and Virpi Kuutti for help with fieldwork and analyses. We are grateful to Ossi Aikio and many other local people for their helpful and cooperative attitude towards our fieldwork in Kaamanen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Väliranta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Väliranta, M., Weckström, J., Siitonen, S. et al. Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. J Paleolimnol 45, 339–352 (2011). https://doi.org/10.1007/s10933-011-9501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-011-9501-5

Keywords

Navigation