Skip to main content

Advertisement

Log in

Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Predicted changes in future climate necessitate a better understanding of climate impacts on lake biota, and the role of within-lake processes in modifying biotic response. Therefore we examined two climate-related variables (lake-water conductivity and GRIP temperatures) and lake ontogeny (lake age), to determine their influence on lake autotrophic communities in two neighbouring closed-basin lakes from West Greenland spanning the past 8,000 years. Using sedimentary pigments as proxies for lake autotrophic communities, we used synchrony and variance partitioning analyses (VPA) to test three specific hypotheses (a) that lake primary production would increase with lake age, (b) that climate would be the dominant process controlling autotrophic communities in these pristine lakes and (c) that the response of autotrophs to conductivity and temperature would vary depending upon the age of the lake. The results supported our first hypothesis, showing that lakes changed significantly with age, exhibiting an increase and decline in production in the first millennium of their existence, followed by a steady increase in production and increasingly frequent abrupt switches between mixed and meromictic states. The highly synchronous detrended response (r = 0.769) of lake autotrophs in the two study lakes, supported our hypothesis that climate was the dominant factor controlling lake autotrophs. However, VPA revealed that our climate-related variables (temperature and conductivity) explained only small amounts of variance alone (<12.9%) because covariance among them hindered efficient partitioning. In support of our third hypothesis, autotrophs responded significantly to temperature and conductivity in interaction with lake age (>50% variance explained) and with each other (>28% variance explained), such that autotrophic response changed as lakes aged. In spite of this, lakes sometimes responded independently, as a result of differences in the relative proportion of benthic to pelagic production and because of differences in lake morphometry. Together these results show that long-term control of lake autotrophs by climate and lake age is modified on shorter timescales by non-linear responses related to within-lake processes, and by the interaction of different climate variables with each other and with lake age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41:621–632

    Article  Google Scholar 

  • Anderson NJ (2000) Diatoms, temperature and climate change. Eur J Phycol 35:307–314

    Google Scholar 

  • Anderson NJ, Stedmon CA (2007) The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshw Biol 52:280–289

    Article  CAS  Google Scholar 

  • Anderson NJ, Bennike O, Christofferson K, Jeppesen E, Markager S, Miller G, Renberg I (1999) Limnological and palaeolimnological studies of lakes in south-western Greenland Geol Greenland. Surv Bull 183:68–74

    Google Scholar 

  • Anderson NJ, Ryves DB, Grauert M, McGowan S (2004) Holocene paleolimnology of Greenland and the North Atlantic Islands (North of 60°N). In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes. Developments in paleoenvironmental research series, vol 8. Springer, Dordrecht, pp 319–347

  • Baron JS, Caine N (2000) Temporal coherence of two alpine lake basins of the Colorado Front Range, U.S.A. Freshw Biol 43:463–476

    Article  Google Scholar 

  • Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho LR, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, developments in paleoenvironmental research series, vol 3, terrestrial, algal and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, de Menocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millenial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    Article  CAS  Google Scholar 

  • Böcher TW (1949) Climate, soil, and lakes in continental West Greenland in relation to plant life. Medd om Grøn 147:63

    Google Scholar 

  • Carpenter SR (2003) Regime shifts in lake ecosystems: pattern and variation. In: Kinne O (ed) Excellence in ecology series, Book 15. International Ecology Institute, Oldendorf, Germany

  • Cuddington K, Leavitt PR (1999) An individual-based model of pigment flux in lakes: implications for organic biogeochemistry and paleoecology. Can J Fish Aquat Sci 56:1964–1977

    Article  CAS  Google Scholar 

  • Cumming BF, Laird KR, Bennet JR, Smol JP, Salomon AK (2002) Persistent millennial-scale shifts in moisture regimes in western Canada during the past six millennia. Proc Nat Acad Sci 99:16117–16121

    Article  CAS  Google Scholar 

  • Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow GD, Johnsen SJ, Hansen AW, Balling N (1998) Past temperatures directly from the Greenland Ice sheet. Science 282:268–271

    Article  CAS  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sed Petrol 44:242–248

    CAS  Google Scholar 

  • Deevey ES (1939) Studies on Connecticut lake sediments: I. A postglacial climatic chronology for southern New England. Am J Sci 237:691–724

    Article  Google Scholar 

  • Dijkmans JWA, Törnqvist TE (1991) Modern periglacial eolian deposits and landforms in the Søndre Strømfjord area, West Greenland and their palaeoenvironmental implications. Medd om Grøn 25:2–39

    Google Scholar 

  • Dore JM, Priscu JC (2001) Phytoplankton phosphorus deficiency and alkaline phosphatase efficiency in the McMurdo Dry Valley lakes, Antarctica. Limnol Oceanogr 46:1331–1346

    Article  CAS  Google Scholar 

  • Douglas MSV, Hamilton PB, Pienitz R, Smol JP (2004) Algal indicators of environmental change in Arctic and Antarctic lakes and ponds. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes. Developments in paleoenvironmental research series, vol 8. Springer, Dordrecht pp 117–157

  • Eisner WR, Törnqvist TE, Koster EA, Bennike O, van Leeuwen JFN (1995) Palaeoecological studies of a Holocene lacustrine record from the Kangerlussuaq (Søndre Strømfjord) region of West Greenland. Quat Res 43:55–66

    Article  Google Scholar 

  • Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166

    Article  CAS  Google Scholar 

  • Evans JC, Prepas EE (1996) Potential effects of climate change on ion chemistry and phytoplankton communities in prairie saline lakes. Limnol Oceanogr 41:1063–1076

    Article  CAS  Google Scholar 

  • Findlay DL, Kasian SEM, Stainton MP, Beaty K, Lyng M (2001) Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnol Oceanogr 46:1784–1793

    Article  Google Scholar 

  • Fredskild B (1983) The Holocene development of some low and high Arctic Greenland lakes. Hydrobiol 103:217–224

    Article  Google Scholar 

  • Fritz SC (1989) Lake development and limnological response to prehistoric and historic land-use in Diss, Norfolk, UK. J Ecol 77:182–202

    Article  Google Scholar 

  • Fritz SC (1990) Twentieth-century salinity and water-level fluctuations in Devils Lake, North Dakota: test of a diatom-based transfer function. Limnol Oceanogr 35:1771–1781

    Article  Google Scholar 

  • George DG, Taylor AH (1995) UK Lake plankton and the Gulf Stream. Nature 378:139

    Article  CAS  Google Scholar 

  • George DG, Talling JF, Rigg E (2000) Factors influencing the temporal coherence of five lakes in the English Lake District. Freshw Biol 43:449–461

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comp Geosci 13:13–35

    Article  Google Scholar 

  • Hall RI, Leavitt PR, Quinlan R, Dixit AS, Smol JP (1999) Effects of agriculture, urbanization and climate on water quality in the Northern Great Plains. Limnol Oceanogr 44:739–756

    Article  CAS  Google Scholar 

  • Hasholt B, Søgaard H (1978) Et forsøg på en klimatisk-hydrologisk regionsinddeling af Holsteinsborg Kommune (Sisimuit). Geogr Tids 77:72–92

    Google Scholar 

  • Hershey AE, Gettel GM, McDonald ME, Miller MC, Mooers H, O’Brien WJ, Pastor J, Richards C, Schuldt JA (1999) A geomorphic-trophic model for landscape control of Arctic lake food webs. Bioscience 49:887–897

    Article  Google Scholar 

  • Hertzberg S, Liaaen Jensen S (1966) The carotenoids of blue-green algae-I. The carotenoids of Oscillatoria rubescens and an Arthrospira sp. Phytochemistry 5:557–563

    Article  CAS  Google Scholar 

  • Hickman M, Schweger CE, Habgood T (1984) Lake Wabamun, Alta.: a palaeoenvironmental study. Can J Bot 62:1438–1465

    Article  Google Scholar 

  • Hodgson DA, Vyverman W, Verleyen E, Sabbe K, Leavitt PR, Taton A, Squier A, Keely BJ (2004) Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquat Microb Ecol 37:247–263

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2003) Community assembly along proglacial chronosequences in the high Arctic: vegetation and soil development in North-west Svalbard. J Ecol 91:651–663

    Article  Google Scholar 

  • Hostetler SW (1997) Near to the edge of an ice sheet. Nature 385:393–394

    Article  CAS  Google Scholar 

  • IPCC (2001) Climate change 2001: synthesis report. A contribution of working groups I, II and III to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

  • Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdottir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MN, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Ruhland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180 degrees W). Quat Sci Rev 23:529–560

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MM, O’Brien WJ (2000) Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43:477–497

    Article  Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental changes using lake sediments vol. 3: terrestrial, algal and siliceous indicators. Kluwer, Dordrecht, pp 295–325

    Google Scholar 

  • Leavitt PR, Cumming BF, Smol JP, Reasoner M, Pienitz R, Hodgson DA (2003) Climatic control of ultraviolet radiation effects on lakes. Limnol Oceanogr 48:2062–2069

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–417

    Article  Google Scholar 

  • Livingstone DM (2003) Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim Change 57:205–255

    Article  Google Scholar 

  • Lotter AF, Birks HJB (1997) The separation of the influence of nutrients and climate on the varve time-series of Baldeggersee, Switzerland. Aquat Sci 56:362–375

    Article  Google Scholar 

  • Magnuson JJ, Kratz TK (2000) Lakes in the landscape: approaches to regional limnology. Verh Int Verein Limnol 27:74–87

    Google Scholar 

  • Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card V, Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski KS (2000) Historical trends in lake and river ice cover in the northern hemisphere. Science 289:1743–1746

    Article  CAS  Google Scholar 

  • McGowan S, Ryves DB, Anderson NJ (2003) Holocene records of effective precipitation in West Greenland. Holocene 13:239–249

    Article  Google Scholar 

  • O’Brien SR, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow SI (1995) Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270:1962–1964

    Article  CAS  Google Scholar 

  • Pennington W (1943) Lake sediments: the bottom deposits of the north basin of Windermere, with special reference to the diatom succession. New Phytol 42:1–27

    Article  Google Scholar 

  • Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme response to climate change in Antarctic lakes. Science 295:645

    Article  CAS  Google Scholar 

  • Renberg I (1981) Improved methods for sampling, photographing and varve-counting of varved lake sediments. Boreas 10:255–258

    Article  Google Scholar 

  • Renberg I, Korsmann T, Anderson NJ (1993) A temporal perspective of lake acidification in Sweden. Ambio 22:264–271

    Google Scholar 

  • Reuss N, Conley DJ (2005) Effects of storage of sediment samples for pigment analyses. Limnol Oceanogr: Methods 3:477–487

    CAS  Google Scholar 

  • Roberts EC, Priscu JC, Wolf C, Lyons WB, Laybourn-Parry J (2004) The distribution of microplankton in the McMurdo Dry Valley Lakes, Antarctica: response to ecosystem legacy or present-day climatic controls? Polar Biol 27:238–249

    Article  Google Scholar 

  • Round FE (1957) The late-glacial and post-glacial diatom succession in the Kentmere Valley deposit. New Phytol 56:98–126

    Article  Google Scholar 

  • Sabbe K, Hodgson DA, Verleyen E, Taton A, Wilmotte A, Vanhoutte K, Vyverman W (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw Biol 49:296–319

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 313:591–596

    Article  CAS  Google Scholar 

  • Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank DR, Fee EJ, Schindler EU, Stainton MP (1996) The effects of climate warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol Oceanogr 41:1004–1017

    Article  CAS  Google Scholar 

  • Seppä H, Nyman M, Korhola A, Weckström J (2002) Changes of tree-lines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid remains. J Quat Sci 17:287–301

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Ruhland K, Sorvari S, Antoniades D, Brooke SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of Arctic lakes. Proc Natl Acad Sci 102:4397–4402

    Article  CAS  Google Scholar 

  • Stone J, Fritz SC (2004) Three-dimensional modeling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktic: benthic ratios. Limnol Oceanogr 49:1540–1548

    Article  CAS  Google Scholar 

  • Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and User’s guide to Canoco for Windows: software for canonical ordination (version 4). Microcomputer Power, Ithaca, New York, USA

  • Vincent W (2000) Cyanobacterial dominance in polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 321–340

    Google Scholar 

  • Vinebrooke RD, Hall RI, Leavitt PR, Cumming BF (1998) Fossil pigments as indicators of phototrophic response to salinity and climatic change in lakes of western Canada. Can J Fish Aquat Sci 55:668–681

    Article  CAS  Google Scholar 

  • Waiser MJ, Robarts RD (2000) Changes in composition and reactivity of allochthonous DOM in a prairie saline lake. Limnol Oceanogr 45:763–774

    Article  CAS  Google Scholar 

  • Webster KE, Soranno PA, Maines SB, Kratz TK, Bowser CJ, Dillon PJ, Campbell P, Fee EJ, Hecky RE (2000) Structuring features of lake districts: landscape controls on lake chemical responses to drought. Freshw Biol 43:499–515

    Article  CAS  Google Scholar 

  • Weidick A (1993) Neoglacial change of ice cover and the related response of the Earth’s crust in West Greenland. Rapp Grøn Geol U 159:121–126

    Google Scholar 

  • Weyhenmeyer GA, Meili DM, Livingstone DA (2004) Nonlinear temperature response of lake ice breakup. Geophys Res Lett 31:L07203

    Article  Google Scholar 

  • Willemse NW, Törnqvist TE (1999) Holocene century-scale temperature variability from West Greenland lake records. Geology 27:580–584

    Article  Google Scholar 

  • Willemse NW, van Dam O, van Helvoort PJ, Dankers R, Brommer M, Schokker J, Valstar TE, de Wolf H (2004) Physical and chemical limnology of a subsaline athalassic lake in West Greenland. Hydrobiologia 524:167–192

    Article  CAS  Google Scholar 

  • Winter TC, Rosenberry DO (1998) Hydrology of prairie pothole wetlands during drought and deluge: a 17-year study of the Cottonwood lake wetland complex in North Dakota in the perspective of longer term measured and proxy hydrological records. Clim Change 40:189–209

    Article  Google Scholar 

  • Wolfe AP (1994) Late Wisconsin and Holocene diatom stratigraphy from Amarok Lake, Baffin Island, N.W.T., Canada. J Paleo 10:129–139

    Article  Google Scholar 

  • Wolfe AP (2003) Diatom community responses to late-Holocene climatic variability, Baffin Island, Canada: a comparison of numerical approaches. Holocene 13:29–37

    Article  Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjørnland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:183–196

    Article  CAS  Google Scholar 

  • Yan ND, Keller W, Scully NM, Lean DRS, Dillon PJ (1996) Increased UV-B penetration in a lake owing to drought-induced acidification. Nature 381:141–143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a EU Marie Curie Fellowship to SMcG (Framework Four, Environment and Climate Programme). We thank Klaus Brodersen, Amy Clarke, Ingemar Renberg and David Ryves for help in the field and Veronika Gählman and Beth Stavngaard for help with sediment processing. Thanks are due to Johanna Laybourn-Parry and Peter Leavitt for helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne McGowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGowan, S., Juhler, R.K. & Anderson, N.J. Autotrophic response to lake age, conductivity and temperature in two West Greenland lakes. J Paleolimnol 39, 301–317 (2008). https://doi.org/10.1007/s10933-007-9105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-007-9105-2

Keywords

Navigation