Skip to main content
Log in

A Comparative Study on the Mechanical and Biodegradation Characteristics of Starch-Based Composites Reinforced with Different Lignocellulosic Fibers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Eco-friendly “green” composites made of bio-based polymers and reinforced with natural fibers have been introduced as a sustainable alternative to the non-renewable petroleum-based materials. The aim of this work is to assess the variations in the mechanical and biodegradation behavior of starch-based composites after being reinforced with different lignocellulosic fibers (i.e., flax, date palm, banana, and bagasse). The investigated composites, of 50 wt% fiber content, were prepared using compression molding. The biodegradation behavior was evaluated using soil-burial composting, while the mechanical investigation was conducted during and after the biodegradation test. Flax composites showed the highest tensile strength and modulus of elasticity, while banana composite had the lowest tensile strength. Both Kelly-Tyson model and Halpin–Tsai mathematical models underestimated the prepared composites’ tensile strength and modulus of elasticity, respectively, except for the case of flax fibers’ composites. The tensile strength and modulus of elasticity for all composites decreased dramatically during the first week (more than 50% reduction), then further gradual deterioration took place until the end of composting. The weight loss of the composites was gradual during the burial period. By the end of the test (6 weeks), the residual weights were 59, 47, 46, and 35% for flax, palm, banana, and bagasse composites, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bourmaud A, Corre Y-M, Baley C (2015) Ind Crops Prod 64:251

    Article  CAS  Google Scholar 

  2. Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Polym Test 32:918

    Article  CAS  Google Scholar 

  3. Okada M (2002) Prog Polym Sci 27:87

    Article  CAS  Google Scholar 

  4. Mohanty A, Misra M, Hinrichsen G (2000) Macromol Mater Eng 276:1

    Article  Google Scholar 

  5. Ibrahim H, Klarner AD, Poorganji B, Dean D, Luo AA, Elahinia M (2017) J Mech Behav Biomed Mater 69:203

    Article  CAS  PubMed  Google Scholar 

  6. Iyer KA, Torkelson JM (2015) Macromol Mater Eng 300:772

    Article  CAS  Google Scholar 

  7. Thompson RC, Moore CJ, Vom Saal FS, Swan SH (2009) Philos Trans R Soc Lond B Biol Sci 364:2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koushal V, Sharma R, Sharma M, Sharma R, Sharma V (2014) Int J Waste Resour 4:6

    Google Scholar 

  9. Maitra J, Singh N (2014) Swelling behavior of starch chitosan polymeric blend. Adv Polym Sci Technol Int J 4:22–27

  10. Zhang J-F, Sun X (2004) Biomacromol 5:1446

    Article  CAS  Google Scholar 

  11. Bootklad M, Kaewtatip K (2013) Carbohydr Polym 97:315

    Article  CAS  PubMed  Google Scholar 

  12. Ibrahim H, Esfahani SN, Poorganji B, Dean D, Elahinia M (2017) Mater Sci Eng C 70:870

    Article  CAS  Google Scholar 

  13. Satyanarayana KG, Arizaga GG, Wypych F (2009) Prog Polym Sci 34:982

    Article  CAS  Google Scholar 

  14. Oksman K, Skrifvars M, Selin J-F (2003) Compos Sci Technol 63:1317

    Article  CAS  Google Scholar 

  15. Haque MM, Hasan M, Islam MS, Ali ME (2009) Bioresour Technol 100:4903

    Article  CAS  PubMed  Google Scholar 

  16. Mejía Osorio JC, Rodríguez Baracaldo R, Olaya Florez JJ, (2012) Ing Investig 32:83

    Google Scholar 

  17. Imam S, Cinelli P, Gordon S, Chiellini E (2005) J Polym Environ 13:47

    Article  CAS  Google Scholar 

  18. Weerapoprasit C, Prachayawarakorn J (2015) Polym Compos 37:3365–3372

    Google Scholar 

  19. Maran JP, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Carbohydr Polym 101:20

    Article  CAS  PubMed  Google Scholar 

  20. Wan Y, Luo H, He F, Liang H, Huang Y, Li X (2009) Compos Sci Technol 69:1212

    Article  CAS  Google Scholar 

  21. Forssell PM, Mikkilä JM, Moates GK, Parker R (1997) Carbohydr Polym 34:275

    Article  CAS  Google Scholar 

  22. Hulleman SH, Janssen FH, Feil H (1998) Polymer 39:2043

    Article  CAS  Google Scholar 

  23. Ibrahim H, Farag M, Megahed H, Mehanny S (2014) Carbohydr Polym 101:11

    Article  CAS  PubMed  Google Scholar 

  24. Elsayed H, Farag M, Megahed H, Mehanny S (2012) in “IMECE2012-89628, Proc. of ASME 2012 International Conference of Mechanical Engineering, Huston, Texas, USA”

  25. Mehanny S, Farag M, Rashad R, Elsayed H (2012) in ASME 2012 International Mechanical Engineering Congress and Exposition

  26. Mehanny S, Darwish L, Ibrahim H, El-Wakad MT, Farag M (2016) High-content lignocellulosic fibers reinforcing starch-based biodegradable composites: properties and applications. In: Composites from renewable and sustainable materials. InTech, Rijeka

  27. Guimarães J, Wypych F, Saul C, Ramos L, Satyanarayana K (2010) Carbohydr Polym 80:130

    Article  CAS  Google Scholar 

  28. Kaith B, Jindal R, Jana A, Maiti M (2010) Bioresour Technol 101:6843

    Article  CAS  PubMed  Google Scholar 

  29. Di Franco C, Cyras V, Busalmen J, Ruseckaite R, Vázquez A (2004) Polym Degrad Stab 86:95

    Article  CAS  Google Scholar 

  30. Avérous L (2004) Polym Rev 44:231

    Google Scholar 

  31. Vilaseca F, Mendez J, Pelach A, Llop M, Canigueral N, Girones J, Turon X, Mutje P (2007) Process Biochem 42:329

    Article  CAS  Google Scholar 

  32. Cao Y, Shibata S, Fukumoto I (2006) Compos Part A 37:423

    Article  CAS  Google Scholar 

  33. Romhány G, Karger-Kocsis J, Czigány T (2003) Macromol Mater Eng 288:699

    Article  CAS  Google Scholar 

  34. Cañigueral N, Vilaseca F, Méndez J, López J, Barberà L, Puig J, Pèlach M, Mutjé P (2009) Chem Eng Sci 64:2651

    Article  CAS  Google Scholar 

  35. Musioł M, Janeczek H, Jurczyk S, Kwiecień I, Sobota M, Marcinkowski A, Rydz J (2015) Fibers Polym 16:1362

    Article  CAS  Google Scholar 

  36. Tena-Salcido C, Rodríguez-González F, Méndez-Hernández M, Contreras-Esquivel J (2008) Polym Bull 60:677

    Article  CAS  Google Scholar 

  37. Nitz H, Semke H, Landers R, Mülhaupt R (2001) J Appl Polym Sci 81:1972

    Article  CAS  Google Scholar 

  38. Alvarez V, Ruseckaite R, Vazquez A (2006) Polym Degrad Stab 91:3156

    Article  CAS  Google Scholar 

  39. Iovino R, Zullo R, Rao M, Cassar L, Gianfreda L (2008) Polym Degrad Stab 93:147

    Article  CAS  Google Scholar 

  40. Monteiro SN, Lopes FPD, Barbosa AP, Bevitori AB, Da Silva ILA, Da Costa LL (2011) Metall Trans A 42:2963

    Article  CAS  Google Scholar 

  41. Kalia S, Kaith B, Kaur I (2009) Polym Eng Sci 49:1253

    Article  CAS  Google Scholar 

  42. Jústiz-Smith NG, Virgo GJ, Buchanan VE (2008) Mater Charact 59:1273

    Article  CAS  Google Scholar 

  43. Baley C (2002) Compos Part A 33:939

    Article  Google Scholar 

  44. Al-Oqla FM, Sapuan S (2014) J Clean Prod 66:347

    Article  CAS  Google Scholar 

  45. Saadaoui N, Rouilly A, Fares K, Rigal L (2013) Mater Des 50:302

    Article  CAS  Google Scholar 

  46. John MJ, Anandjiwala RD (2008) Polym Compos 29:187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge the support provided by Qatar Foundation by allowing us to use their facilities. Moreover, we would like to acknowledge the Egyptian Industrial Center (E.I.C.) for providing the flax fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdy Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, H., Mehanny, S., Darwish, L. et al. A Comparative Study on the Mechanical and Biodegradation Characteristics of Starch-Based Composites Reinforced with Different Lignocellulosic Fibers. J Polym Environ 26, 2434–2447 (2018). https://doi.org/10.1007/s10924-017-1143-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1143-x

Keywords

Navigation