Skip to main content
Log in

AAC: Adaptively Adjusting Concurrency by Exploiting Path Diversity in Datacenter Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Recent datacenter load balancing designs make full use of all available multiple paths to achieve high bisection bandwidth and support the increasing traffic demands. However, a multitude of uncertainties, such as congestion and asymmetry, easily leads to long tailed latencies for unlucky flows on bad paths. In this paper, we aim at adjusting the maximum number of multiple paths used by existing load balancing designs to achieve good tradeoff between the tailed latency and link utilization. Specifically, we propose a packet-level load balancing called scheme Adaptively Adjusting Concurrency (AAC) to spread packets across the multiple paths, which are adaptively selected according to path diversity. AAC is deployed at switch, without any modifications on end-hosts. The experimental results of NS2 simulation and Mininet implementation show that AAC significantly reduces the flow completion time by \(\sim\)21–56% over the state-of-the-art datacenter load balancing designs including MPTCP, LetFlow and RPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Huang, Q., Jin, X., Lee, P.P.C., et al.: Setchvisor: Robust network measurement for software packet processing. In: Proc. ACM Special Interest Group on Data Communication, pp. 113–126 (2015)

  2. Bredel, M., Bozakov, Z., Barczyk, A., et al.: low-based load balancing in multipathed layer-2 networks using OpenFlow and multipath-TCP. In: Proc. Hot Topics in Software Defined Networking, pp. 213–214 (2014)

  3. Hopps, C.: Analysis of an equal-cost multi-path algorithm. RFC 2992, November, (2000). http://www.ietf.org/rfc/rfc2992.txt

  4. Raiciu, C., Barre, S., Pluntke, C., et al.: Improving datacenter performance and robustness with multipath TCP. ACM SIGCOMM Comput. Commun. Rev. 41(4), 266–277 (2011)

    Article  Google Scholar 

  5. Dixit, A., Prakash, P., Hu, Y. C., et al.: On the impact of packet spraying in data center networks. In Proc. IEEE INFOCOM, pp. 2130–2138 (2013)

  6. Ghorbani, S., Yang, Z., Godfrey, P. B., et al.: Drill: Micro load balancing for low-latency data center networks. In: Proc. ACM Special Interest Group on Data Communication, pp. 225–238 (2017)

  7. Zhang, H., Zhang, J., Bai, W., et al.: Resilient datacenter load balancing in the wild. In: Proc. ACM Special Interest Group on Data Communication, pp. 253–266 (2017)

  8. Vanini, E., Pan, R., Alizadeh, M., et al.: Let it flow: Resilient asymmetric load balancing with flowlet switching. In: Proc. USENIX Symposium on Networked Systems Design and Implementation, pp. 407–420 (2017)

  9. Chen, G., Lu, Y., Meng, Y., et al.: Fast and cautious: Leveraging multi-path diversity for transport loss recovery in data centers. In: Proc. USENIX Annual Technical Conference, pp. 29–42 (2016)

  10. Tso, F. P., Hamilton, G., Weber, R., et al.: Longer is better: exploiting path diversity in data center networks. In: Proc. International Conference on Distributed Computing Systems, pp. 430–439 (2013)

  11. Alizadeh, M., Edsall, T., Dharmapurikar, S., et al.: CONGA: distributed congestion-aware load balancing for datacenters. In: Proc. ACM Conference on SIGCOMM, pp. 503–514 (2014)

  12. Cao, Y., Xu, M., Fu, X., et al.: Explicit multipath congestion control for data center networks. In Proc. ACM Conference on Emerging Networking Experiments and Technologies, pp. 73–84 (2013)

  13. Zats, D., Das, T., Mohan, P., et al.: DeTail: reducing the flow completion time tail in datacenter networks. In: Proc. ACM SIGCOMM on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 139–150 (2012)

  14. Zhang, J., Zhang, D., Huang, K.: Improving datacenter throughput and robustness with Lazy TCP over packet spraying. Comput. Commun. 62, 23–33 (2015)

    Article  Google Scholar 

  15. Wang, W., Sun, Y., Salamatian, K., et al.: Adaptive path isolation for elephant and mice flows by exploiting path diversity in datacenters. IEEE Trans. Netw. Serv. Manag. 13(1), 5–18 (2016)

    Article  Google Scholar 

  16. Alizadeh, M., Kabbani, A., Edsall, T., et al.: Less is more: trading a little bandwidth for ultra-low latency in the data center. In: Proc. USENIX Symposium on Networked Systems Design and Implementation, pp. 253–266 (2012)

  17. Carpio, F., Engelmann, A., Jukan, A.: DiffFlow: differentiating short and long flows for load balancing in data center networks. In: Proc. IEEE Global Communications Conference, pp. 1–6 (2016)

  18. Lee, C., Park, C., Jang, K., et al.: Accurate latency-based congestion feedback for datacenters. In: Proc. USENIX, pp. 403–415 (2015)

  19. Mittal, R., Lam, V.T., Dukkipati, N., et al.: TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM Comput. Commun. Rev. 45(4), 537–550 (2015)

    Article  Google Scholar 

  20. Zou, S., Huang, J., Wang, J., et al.: Improving TCP Robustness over asymmetry with reordering marking and coding in data centers. In: Proc. International Conference on Distributed Computing Systems, pp. 57–67 (2019)

  21. Alizadeh, M., Yang, S., Sharif, M., et al.: Pfabric: minimal near-optimal datacenter transport. ACM SIGCOMM Comput. Commun. Rev. 43(4), 435–446 (2013)

    Article  Google Scholar 

  22. Munir, A., Qazi, I.A., Uzmi, Z.A., et al.: Minimizing flow completion times in data centers. In: Proc. IEEE INFOCOM, pp. 2157–2165 (2013)

  23. Noormohammadpour, M., Raghavendra, C.S.: Datacenter traffic control: understanding techniques and tradeoffs. IEEE Commun. Surv. Tutor. 20(2), 1492–1525 (2017)

    Article  Google Scholar 

  24. Alizadeh, M., Greenberg, A., Maltz, D. A., et al.: Data center TCP (DCTCP). In: Proc. ACM SIGCOMM, pp. 63–74 (2010)

  25. Hu, J., Huang, J., Lv, W., et al.: CAPS: coding-based adaptive packet spraying to reduce flow completion time in data center. IEEE/ACM Trans. Netw. 27(6), 2338–2353 (2019)

    Article  Google Scholar 

  26. Kheirkhah, M., Wakeman, I., Parisis, G.: MMPTCP: a multipath transport protocol for data centers. In: Proc. IEEE INFOCOM, pp.1–9 (2016)

  27. Zhangy, W., Lingy, D., Zhangy, Y., et al.: Achieving optimal edge-based congestion-aware load balancing in data center networks. In: Proc. IEEE Networking Conference, pp. 109–117 (2020)

  28. Sen, S., Shue, D., Ihm, S., et al.: Scalable, “Optimal flow routing in datacenters via local link balancing”. In: Proc. ACM Conference on Emerging Networking Experiments and Technologies, pp. 151–162 (2013)

  29. Serfozo, R.F.: An equivalence between continuous and discrete time Markov decision processes. Oper. Res. 27(3), 616–620 (1979)

    Article  MathSciNet  Google Scholar 

  30. Kabbani, A., Sharif, M.: Flier: flow-level congestion-aware routing for direct-connect data centers. In: Proc. IEEE INFOCOM, pp. 1–9 (2017)

  31. Katta, N., Hira, M., Ghag, A., et al.: CLOVE: How I learned to stop worrying about the core and love the edge. In: Proc. the 15th ACM Workshop on Hot Topics in Networks, pp. 155–161 (2016)

  32. Huang, J., Li, W., Li, Q., et al.: Tuning high flow concurrency for MPTCP in data center networks. J. Cloud Comput. 9(1), 1–15 (2020)

    Article  Google Scholar 

  33. Liu, J., Huang, J., Li, W., et al.: AG: adaptive switching granularity for load balancing with asymmetric topology in data center network. In: Proc. International Conference on Network Protocols, pp. 1–11 (2019)

  34. Shi, Q., Wang, F., Feng, D.: IntFlow: integrating per-packet and per-flowlet switching strategy for load balancing in datacenter networks. IEEE Trans. Netw. Serv. Manag. 17(3), 1377–1388 (2020)

    Article  Google Scholar 

  35. Wang, P., Trimponias, G., Xu, H., et al.: Luopan: sampling-based load balancing in data center networks. IEEE Trans. Parallel Distrib. Syst. 30(1), 133–145 (2018)

    Article  Google Scholar 

  36. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993)

    Article  Google Scholar 

  37. Zou, S., Huang, J., Jiang, W., et al.: Achieving high utilization of flowlet-based load balancing in data center networks. Future Gener. Comput. Syst. 108, 546–559 (2020)

    Article  Google Scholar 

  38. Xu, C., Yuan, T., Zhang, H., et al.: Dual channel per-packet load balancing for datacenters. In: Proc. IEEE INFOCOM, pp. 157–164 (2020)

  39. He, B., Zhang, D., Zhao, C.: Hidden Markov Model-based Load Balancing in Data Center Networks. Comput. J. 63(10), 449–1462 (2020)

    Article  MathSciNet  Google Scholar 

  40. Xu, H., Li, B.: RepFlow: minimizing flow completion times with replicated flows in data centers. In: Proc. IEEE INFOCOM on Computer Communications, pp. 1581–1589 (2014)

  41. Huang, J., Lv, W., Li, W., et al.: QDAPS: queueing delay aware packet spraying for load balancing in data center. In: Proc. International Conference on Network Protocols, pp. 66–76 (2018)

  42. Perry, J., Ousterhout, A., Balakrishnan, H., et al.: “Fastpass: a centralized” zero-queue “datacenter network”. In: Proc. SIGCOMM, pp. 307–318 (2014)

  43. Hu, J., Huang, J., Lv, W., et al.: TLB: Traffic-aware load balancing with adaptive granularity in data center networks. In: ICPP 2019: Proceedings of the 48th International Conference on Parallel Processing, pp. 1–10 (2019)

  44. Katta, N., Ghag, A., Hira, M., et al.: Clove: congestion-aware load balancing at the virtual edge. In: Proc. the 13th International Conference on Emerging Networking Experiments and Technologies (2017)

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Hunan Province, China (No. 2018JJ2084), National Natural Science Foundation of China (No. 61872387), and Project of Foreign Cultural and Educational Expert (No. G20190018003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Huang, J., Zou, S. et al. AAC: Adaptively Adjusting Concurrency by Exploiting Path Diversity in Datacenter Networks. J Netw Syst Manage 29, 26 (2021). https://doi.org/10.1007/s10922-021-09590-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-021-09590-z

Keywords

Navigation