Skip to main content
Log in

A Robust Solver for a Mixed Finite Element Method for the Cahn–Hilliard Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a robust solver for a mixed finite element convex splitting scheme for the Cahn–Hilliard equation. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 15. Arch. Numer. Soft. 3, 9–23 (2015)

    Google Scholar 

  2. Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. 65, 301–314 (2013)

    Article  MathSciNet  Google Scholar 

  3. Barrett, J.W., Nurnberg, R., Styles, V.: Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42(2), 738–772 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118, 197–228 (2011)

    Article  MathSciNet  Google Scholar 

  5. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  6. Boyanova, P., Do-Quang, M., Neytcheva, M.: Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  8. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795 (1961)

    Article  Google Scholar 

  9. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258 (1958)

    Article  Google Scholar 

  10. Ceniceros, H.D., Roma, A.M.: A nonstiff, adaptive mesh refinement-based method for the Cahn–Hilliard equation. J. Comput. Phys. 225, 1849–1862 (2007)

    Article  MathSciNet  Google Scholar 

  11. Choksi, R., Maras, M., Williams, J.F.: 2D phase diagram for minimizers of a Cahn–Hilliard functional with long-range interactions. SIAM J. Appl. Dyn. Sys. 10(4), 1344–1362 (2011)

    Article  MathSciNet  Google Scholar 

  12. Diegel, A., Feng, X., Wise, S.M.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015)

    Article  MathSciNet  Google Scholar 

  13. Diegel, A., Wang, C., Wise, S.M.: Stability and convergence of a second-order mixed finite element method for the Cahn–Hilliard equation. IMA J. Numer. Anal. 36, 1867–1897 (2016)

    Article  MathSciNet  Google Scholar 

  14. Du, Q., Li, M., Liu, C.: Analysis of a phase field Navier–Stokes vesicle–fluid interaction model. Discrete Contin. Dyn. Syst. Ser. B 8(3), 539 (2007)

    Article  MathSciNet  Google Scholar 

  15. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999)

    Book  Google Scholar 

  16. Elliott, C.M., Zheng, S.: On the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 96, 339–357 (1986)

    Article  MathSciNet  Google Scholar 

  17. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2014)

    Book  Google Scholar 

  18. Eyre, D.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard, J.W., Kalia, R., Stoneham, M., Chen, L.Q. (eds.) Computational and Mathematical Models of Microstructural Evolution, vol. 53, pp. 1686–1712. Materials Research Society, Warrendale (1998)

    Google Scholar 

  19. Feng, X.: Fully discrete finite element approximations of the Navier–Stokes–Cahn–Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44, 1049–1072 (2006)

    Article  MathSciNet  Google Scholar 

  20. Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  21. Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (1985)

    Book  Google Scholar 

  22. Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212, 288–304 (2006)

    Article  MathSciNet  Google Scholar 

  23. Kim, J.: A numerical method for the Cahn–Hilliard equation with a variable mobility. Commun. Nonlinear Sci. Numer. Simul. 12, 1560–1571 (2007)

    Article  MathSciNet  Google Scholar 

  24. Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)

    Article  MathSciNet  Google Scholar 

  25. Lee, C., Jeong, D., Shin, J., Li, Y., Kim, J.: A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation. Physics A 409, 17–28 (2014)

    Article  MathSciNet  Google Scholar 

  26. Lee, D., Huh, J., Jeong, D., Shin, J., Yun, A., Kim, J.: Physical, mathematical, and numerical derivations of the Cahn–Hilliard equation. Comput. Mater. Sci. 81, 216–225 (2014)

    Article  Google Scholar 

  27. Lee, H.G., Lowengrub, J.S., Goodman, J.: Modeling pinchoff and reconnection in a Hele–Shaw cell. I. The models and their calibration. Phys. Fluids 14, 492–513 (2002)

    Article  MathSciNet  Google Scholar 

  28. Mardal, K.-A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18, 1–40 (2011)

    Article  MathSciNet  Google Scholar 

  29. Shin, J., Kim, S., Lee, D., Kim, J.: A parallel multigrid method of the Cahn–Hilliard equation. Comput. Mater. Sci. 71, 89–96 (2013)

    Article  Google Scholar 

  30. Stogner, R.H., Carey, G.F., Murray, B.T.: Approximation of Cahn–Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with C1 elements. Int. J. Numer. Methods Eng. 76, 636–661 (2008)

    Article  Google Scholar 

  31. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  Google Scholar 

  32. Tierra, G., Guillén-González, F.: Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models. Arch. Comput. Methods Eng. 22, 269–289 (2015)

    Article  MathSciNet  Google Scholar 

  33. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  34. van Teeffelen, S., Backofen, R., Voigt, A., Löwen, H.: Derivation of the phase-field-crystal model for colloidal solidification. Phys. Rev. E 79, 051404 (2009)

    Article  Google Scholar 

  35. Walker, S.W.: FELICITY: finite element implementation and computational interface tool for you. http://www.mathworks.com/matlabcentral/fileexchange/31141-felicity

  36. Wang, W., Chen, L., Zhou, J.: Postprocessing mixed finite element methods for solving Cahn–Hilliard equation: methods and error analysis. J. Sci. Comput. 67, 724–746 (2016)

    Article  MathSciNet  Google Scholar 

  37. Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)

    Article  MathSciNet  Google Scholar 

  38. Wise, S.M., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226, 414–446 (2007)

    Article  MathSciNet  Google Scholar 

  39. Zulehner, W.: Nonstandard norms and robust estimates for saddle point problems. SIAM J. Matrix Anal. Appl. 32(2), 536–560 (2011)

    Article  MathSciNet  Google Scholar 

  40. Zheng, B., Chen, L.-P., Hu, X., Chen, L., Nochetto, R.H., Xu, J.: Fast multilevel solvers for a class of discrete fourth order parabolic problems. J. Sci. Comput. 69, 201–226 (2016)

    Article  MathSciNet  Google Scholar 

  41. Zhou, J., Chen, L., Huang, Y., Wang, W.: An efficient two-grid scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 17, 127–145 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Portions of this research were conducted with high performance computational resources provided by Louisiana State University (http://www.hpc.lsu.edu). We would also like to thank Shawn Walker for his valuable advice regarding the FELICITY/C++ Toolbox for MATLAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne C. Brenner.

Additional information

The work of the first and third authors was supported in part by the National Science Foundation under Grant No. DMS-16-20273.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, S.C., Diegel, A.E. & Sung, LY. A Robust Solver for a Mixed Finite Element Method for the Cahn–Hilliard Equation. J Sci Comput 77, 1234–1249 (2018). https://doi.org/10.1007/s10915-018-0753-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0753-3

Keywords

Navigation