Skip to main content
Log in

Asymptotically Exact Posteriori Error Estimates for the Local Discontinuous Galerkin Method Applied to Nonlinear Convection–Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present and analyze implicit a posteriori error estimates for the local discontinuous Galerkin (LDG) method applied to nonlinear convection–diffusion problems in one space dimension. Optimal a priori error estimates for the solution and for the auxiliary variable that approximates the first-order derivative are derived in the \(L^2\)-norm for the semi-discrete formulation. More precisely, we identify special numerical fluxes and a suitable projection of the initial condition for the LDG scheme to achieve \(p+1\) order of convergence for the solution and its spatial derivative in the \(L^2\)-norm, when piecewise polynomials of degree at most p are used. We further prove that the derivative of the LDG solution is superconvergent with order \(p+1\) towards the derivative of a special projection of the exact solution. We use this result to prove that the LDG solution is superconvergent with order \(p+3/2\) towards a special Gauss–Radau projection of the exact solution. Our superconvergence results allow us to show that the leading error term on each element is proportional to the \((p+1)\)-degree right Radau polynomial. We use these results to construct asymptotically exact a posteriori error estimator. Furthermore, we prove that the a posteriori LDG error estimate converges at a fixed time to the true spatial error in the \(L^2\)-norm at \(\mathcal {O}(h^{p+3/2})\) rate. Finally, we prove that the global effectivity index in the \(L^2\)-norm converge to unity at \(\mathcal {O}(h^{1/2})\) rate. Our proofs are valid for arbitrary regular meshes using \(P^p\) polynomials with \(p\ge 1\). Finally, several numerical examples are given to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  2. Adjerid, S., Baccouch, M.: A superconvergent local discontinuous Galerkin method for elliptic problems. J. Sci. Comput. 52, 113–152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adjerid, S., Baccouch, M.: Adaptivity and error estimation for discontinuous Galerkin methods. In: Feng, X., Karakashian, O., Xing, Y. (eds.) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, vol. 157 of The IMA Volumes in Mathematics and its Applications, pp. 63–96. Springer International Publishing, Switzerland (2014)

    Google Scholar 

  4. Adjerid, S., Issaev, D.: Superconvergence of the local discontinuous Galerkin method applied to diffusion problems. In: Bathe, K. (ed.) Proceedings of the Third MIT Conference on Computational Fluid and Solid Mechanics, vol. 3. Elsevier (2005)

  5. Adjerid, S., Klauser, A.: Superconvergence of discontinuous finite element solutions for transient convection–diffusion problems. J. Sci. Comput. 22, 5–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baccouch, M.: A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Eng. 209–212, 129–143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baccouch, M.: A posteriori error estimates for a discontinuous Galerkin method applied to one-dimensional nonlinear scalar conservation laws. Appl. Numer. Math. 84, 1–21 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baccouch, M.: Asymptotically exact a posteriori LDG error estimates for one-dimensional transient convection–diffusion problems. Appl. Math. Comput. 226, 455–483 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Baccouch, M.: Superconvergence and a posteriori error estimates for the LDG method for convection-diffusion problems in one space dimension. Comput. Math. Appl. 67, 1130–1153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baccouch, M.: A superconvergent local discontinuous Galerkin method for the second-order wave equation on cartesian grids. Comput. Math. Appl. 68, 1250–1278 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baccouch, M.: Optimal a posteriori error estimates of the local discontinuous Galerkin method for convection–diffusion problems in one space dimension. J. Comput. Math. 34, 511–531 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baccouch, M., Adjerid, S.: Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes. Comput. Methods Appl. Mech. Eng. 200, 162–177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, W., Zhang, Z.: Superconvergence of local discontinuous Galerkin methods for one-dimensional linear parabolic equations. Math. Comput. 85(297), 63–84 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Castillo, P.: An optimal estimate for the local discontinuous Galerkin method. In: Discontinuous Galerkin Methods (Newport, RI, 1999), vol. 11 of Lecture Notes in Computational Science and Engineering, pp. 285–290. Springer, Berlin (2000)

  15. Castillo, P.: A superconvergence result for discontinuous Galerkin methods applied to elliptic problems. Comput. Methods Appl. Mech. Eng. 192, 4675–4685 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Castillo, P.: A review of the local discontinuous Galerkin (LDG) method applied to elliptic problems. Appl. Numer. Math. 56, 1307–1313 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71, 455–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Celiker, F., Cockburn, B.: Superconvergence of the numerical traces for discontinuous Galerkin and hybridized methods for convection–diffusion problems in one space dimension. Math. Comput. 76, 67–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss–Radau projections for the local discontinuous Galerkin method for linear convection–diffusion equations. Math. Comput. 86(305), 1233–1267 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, Y., Shu, C.-W.: Superconvergence of local discontinuous Galerkin methods for convection–diffusion equations. Comput. Struct. 87, 630–641 (2009)

    Article  Google Scholar 

  22. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection–diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cheng, Y., Zhang, F., Zhang, Q.: Local analysis of local discontinuous Galerkin method for the time-dependent singularly perturbed problem. J. Sci. Comput. 63(2), 452–477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Pub. Co., Amsterdam (1978)

    MATH  Google Scholar 

  25. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Kanschat, G., Schötzau, D.: The local discontinuous Galerkin method for linearized incompressible fluid flow: a review. Comput. Fluids 34(4–5), 491–506 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  29. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin methods for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  Google Scholar 

  30. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Devine, K.D., Flaherty, J.E.: Parallel adaptive \(hp\)-refinement techniques for conservation laws. Comput. Methods Appl. Mech. Eng. 20, 367–386 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Flaherty, J.E., Loy, R., Shephard, M.S., Szymanski, B.K., Teresco, J.D., Ziantz, L.H.: Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. J. Parallel Distrib. Comput. 47, 139–152 (1997)

    Article  Google Scholar 

  33. Liu, H., Ploymaklam, N.: A local discontinuous Galerkin method for the Burgers–Poisson equation. Numer. Math. 129(2), 321–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Meng, X., Shu, C.-W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50(5), 2336–2356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Osher, S.: Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21(2), 217–235 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28(1), 133–140 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA (2008)

    Book  MATH  Google Scholar 

  38. Schötzau, D., Schwab, C.: Time discretization of parabolic problems by the \(hp\)-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal. 38, 837–875 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196, 3805–3822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, Y., Shu, C.-W.: Analysis of sharp superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J. Comput. Math. 33, 323–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Z., Xie, Z., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for convection–diffusion problems. J. Sci. Comput. 41, 70–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was funded by the University Committee on Research and Creative Activity (UCRCA Proposal 2016-01-F) at the University of Nebraska at Omaha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahboub Baccouch.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical Statement

The author agrees that this manuscript has followed the rules of ethics presented in the journal’s Ethical Guidelines for Journal Publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccouch, M. Asymptotically Exact Posteriori Error Estimates for the Local Discontinuous Galerkin Method Applied to Nonlinear Convection–Diffusion Problems. J Sci Comput 76, 1868–1904 (2018). https://doi.org/10.1007/s10915-018-0687-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0687-9

Keywords

Mathematics Subject Classification

Navigation