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Abstract In this paper, in order to simplify the high order Hermite weighted essentially
non-oscillatory (HWENO) finite difference schemes of Liu and Qiu (J Sci Comput 63:548–
572, 2015), a new type of HWENO schemes based on compact difference schemes, termed
CHWENO (compact HWENO) schemes, is proposed for solving both one and two dimen-
sional hyperbolic conservation laws. The idea of reconstruction in CHWENO schemes is
similar to HWENO schemes, however the first derivative values of solution are solved by
the compact difference method and only one numerical flux is used in CHWENO schemes,
while the derivative equation is needed to be solved and two numerical fluxes are used in
HWENO schemes. Compared with the original finite difference weighted essentially non-
oscillatory schemes, CHWENO schemes maintain the compactness of HWENO schemes,
whichmeans that only three points are needed for a fifth orderCHWENOschemes. Compared
with the HWENO schemes, CHWENO schemes avoid solving the complex derivative equa-
tions, which can considerably expedite calculating speed. Several numerical tests, including
the 1D shock density wave interaction problem and 2D Riemann problem, are presented to
demonstrate the efficiency of CHWENO schemes.
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1 Introduction

In this paper, we design and test the finite difference compact Hermite weighted essentially
non-oscillatory (CHWENO) schemes for solving the nonlinear hyperbolic conservation laws
of the type:

ut + divf (u) = 0. (1.1)

Because of their nonlinear characteristics, there are several difficulties in solving these
equations by mathematical methods. Thus in application, such as fluid dynamics, we always
solve these problems by numerical methods. On the one hand, in order to reduce the grid
numbers and improve the efficiency in the calculation, numerical methods of high-order
accuracy are undoubtedly the best choices. On the other hand, when meeting with the prob-
lems with strong discontinuities, the high-order numerical methods cannot maintain the good
characteristics, even the oscillations may appear near the discontinuities and influence the
whole solutions. Therefore developing numerical methods of high-order accuracy, high effi-
ciency and high robustness has aroused wide interest of researchers and practitioners. At the
present stage, many numerical methods of high-order accuracy have been devised to solve
these problems. In this paper, what we would like to mention are essentially non-oscillatory
(ENO) schemes, weighted ENO (WENO) schemes andHermiteWENO (HWENO) schemes.

In 1987, in order to overcome the drawbacks of total variation diminishing (TVD)
schemes [7], finite volume ENO schemes were first proposed by Harten, Osher, Engquist
and Chakravarthy [8,9]. ENO schemes choose the smoothest stencil among all the candi-
dates to approximate the fluxes, which aims to get a high order accuracy and eliminate the
spurious oscillation near the discontinuities. In 1988 and 1989, Shu and Osher devised the
finite difference ENO schemes [27,28], which can simplify the reconstruction from cell aver-
ages to point values in the finite volume ENO schemes. Then Christofi [3], Iske and Soner
[10] proposed ENO schemes on the basis of non-polynomial function reconstruction.

The first finite volume WENO schemes, which were introduced by Liu and Osher [20]
in 1994, are based on ENO schemes. The key idea of WENO schemes is to use a convex
combination of all the candidate stencils. Each of candidate stencils is assigned a nonlinear
weight which depends on local smoothness of the numerical solution on the candidate stencils
and the optimal weights. In this way, WENO schemes can achieve a higher order accuracy,
which means that an rth-order ENO scheme leads to a (2r− 1)th-order WENO scheme, and
keep a non-oscillatory property near the discontinuities. In 1996, Shu and Jiang introduced
third and fifth order finite differenceWENO schemes [12] in multi space dimensions.WENO
schemes retain the twomajor benefits of ENO schemes: uniformly high order accuracy and an
essentially non-oscillatory shock transition, which make them excellent methods for solving
many problemswith strong shocks. In addition,WENO schemes aremore efficient than ENO
schemes, because WENO schemes completely remove the logical statement in the stencil
choosing steps of ENO schemes. Then Jiang and Osher et al. [11,14,21] developed ENO
and WENO schemes for Hamilton–Jacobi equations. Balsara and Shu [2] proposed WENO
schemes with increasingly high order of accuracy.

In 2004, Qiu and Shu had constructed a class of fifth-order finite volumeWENO schemes
based on the Hermite polynomials, termed HWENO schemes [22], for solving the 1D
nonlinear hyperbolic conservation laws and serving as the limiters of the Runge–Kutta Dis-
continuous Galerkin (RKDG) methods. Unlike the Lagrange interpolation in the original
WENO schemes, both the function and its first derivative values are evolved in the recon-
struction of HWENO schemes. Then HWENO schemes were applied to two-dimensional
situation [23,30]. In 2015, Liu and Qiu had proposed fifth-order finite difference HWENO
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schemes [16] and then presented an alternative approach to reconstruct the numerical fluxes
[17]. HWENO schemes are more compact than WENO schemes on the same order of accu-
racy in smooth regions. However, the drawback of HWENO schemes is to solve an extra
derivative equation in every step, which causes that the HWENO schemes require about
double computing time of original WENO schemes under the same grid numbers.

In 1989, Dennis and Hundson [5] proposed a fourth-order compact difference scheme in
convection-diffusion problems. This scheme could obtain more accurate results by coarser
meshes. In 1992, Lele [15] firstly developed compact difference schemes with spectral-like
resolution on the basis of previouswork.He proposed a central sixth-order compact difference
scheme with five points, which could attain the same accuracy of spectrum method. Then a
compact-ENO scheme for shock-turbulence interaction problems was introduced by Adams
and Shariff [1] in 1996. Next year, Gaitonde and Shang [6] proposed optimized compact-
difference-based finite-volume schemes, which facilitated the development of high order
accurate compact difference. Then Sengupta et al. [4,13,25] developed a type of upwind
compact difference schemes and applied them inmany areas. In 2013, Liu et al. [18] proposed
a new class of linear central compact difference schemes by using function values on both
grid nodes and cell centers. Then in 2015, Xuliang Liu et al. [19] developed a new class
of nonlinear central compact difference schemes, where numerical fluxes at cell centers are
obtained by a hybrid weighted nonlinear interpolation.

To improve the efficiency of HWENO schemes, a class of fifth-order finite difference
compact HWENO (CHWENO) schemes is presented in this paper. Instead of solving the
derivative equations, CHWENO schemes use the compact difference methods to obtain the
derivative values in the process of reconstruction. Thus CHWENO schemes only use one
numerical flux in the calculation, while HWENO schemes need to get two numerical fluxes.
On the one hand,CHWENOschemesmaintain the compactness ofHWENOschemes. Specif-
ically, five points are needed to get a fifth-order WENO (WENO5) numerical flux, while
only three points are needed for both a fifth-order HWENO (HWENO5) and a fifth-order
CHWENO (CHWENO5) numerical flux. On the other hand, CHWENO schemes can con-
siderably increase the calculating speed because the derivative equations have been removed.
In two dimensional cases, CHWENO schemes can avoid order reduction like HWENO
schemes.

The organization of this paper is as follow. In Sect. 2, we will describe the reconstruc-
tion process of finite difference CHWENO schemes for one dimensional situations and the
compact difference methods that are used to get the derivative values. In Sect. 3, we extend
the CHWENO schemes to two-dimensional cases. In Sect. 4, we test the characteristics of
CHWENO schemes by some typical numerical experiments. Concluding remarks are given
in Sect. 5.

2 Descriptions of CHWENO Schemes in One-Dimensional Case

2.1 Finite Difference WENO Schemes of Jiang and Shu

In this section, we firstly introduce the finite difference WENO schemes of Jiang and Shu
[12] as the basis, because WENO schemes are general frameworks for the reconstruction
approaches. Consider the one-dimensional scalar conservation laws of (1.1):

{
ut + f (u)x = 0, x ∈ (−∞,∞) , t ∈ (0,∞) ,

u (x, 0) = u0 (x) , x ∈ (−∞,∞) .
(2.1)
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We discretize the space into uniform intervals of size Δx and then define x j = jΔx . The
variable quantities at x j will be identified by the subscript j . The spacial operator of WENO
schemes [12], which approximate − f (u)x , will take the conservative form

du j (t)

dt
= −

f̄
j+ 1

2
− f̄

j− 1
2

Δx
, (2.2)

where the numerical flux f̄
j+ 1

2
is the high order approximation of function F (x + 1/2),

which is defined implicitly by

f (u (x)) = 1

Δx

∫ x+ 1
2Δx

x− 1
2Δx

F (ξ) dξ . (2.3)

Then we have

f (u)x|x=x j
= 1

Δx

[
F

(
x j+1/2

) − F
(
x j−1/2

)]
. (2.4)

The numerical flux f̄
j+ 1

2
satisfying

f̄
j+ 1

2
= F

(
x j+1/2

) + O
(
Δxr ) , (2.5)

makes the scheme (2.22) rth order accuracy.
For the robustness of numerical schemes,we usually divide the numerical flux into positive

and negative part [8,27]:

f (u) = f + (u) + f − (u) , (2.6)

where d f (u)+/du ≥ 0 and d f (u)−/du ≤ 0. One example is the global Lax–Friedrichs (LF)
flux splitting

f + (u) = 1

2
[ f (u) + αu] , f − (u) = 1

2
[ f (u) − αu] , (2.7)

where α = max
∣∣ f ′ (u)

∣∣ and the maximum is gotten over the whole range of u. Hence, we
have the numerical flux f̄

j+ 1
2
been split into two parts:

f̄
j+ 1

2
= f̄ +

j+ 1
2

+ f̄ −
j+ 1

2

. (2.8)

Here, because of the mirror symmetry, we will only give the reconstruction of positive
flux part f̄ +

j+1/2 in this paper. The reconstruction of negative part will not be shown.

Like ENO schemes, f̄ +
j+1/2 can be also obtained in r candidate stencils inWENOschemes.

Here we denote the r candidate stencils by Sk, k = 0, 1, . . . , r − 1, where

Sk = (
I j+k−r+1, I j+k−r+2, . . . , I j+k

)
.

The difference is that ENO schemes only use the smoothest stencil, whileWENO schemes
use all stencils. In WENO schemes, each of candidate stencils is assigned a nonlinear weight
which depends on local smoothness of the numerical solution on the candidate stencils and the
optimal weights. Then we take fifth-order finite difference WENO schemes for an example
to illustrate the optimal weights and smoothness measurement.
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In fifth-order finite difference WENO schemes, there are three candidate stencils: S1 ={
I j−2, I j−1, I j

}
, S2 = {

I j−1, I j , I j+1
}
, S3 = {

I j , I j+1, I j+2
}
, which are used to structure

a bigger stencil S = S1 ∪ S2 ∪ S3 = {
I j−2, I j−1, I j , I j+1, I j+2

}
.

For the smaller stencil Si , we use Lagrange polynomials to formulate the function pi (x)

to get the function value at the half nodes x j+1/2. Hence, we have

p1
(
x j+1/2

) = 1

3
f j−2 − 7

6
f j−1 + 11

6
f j ,

p2
(
x j+1/2

) = −1

6
f j−1 + 5

6
f j + 1

3
f j+1,

p3
(
x j+1/2

) = 1

3
f j + 5

6
f j+1 − 1

6
f j+2.

(2.9)

For the bigger stencil S, we can also get the function q(x) through Lagrange polynomials.
Then we get a fifth-order numerical flux

q

(
x

j+ 1
2

)
= 1

30
f j−2 − 13

60
f j−1 + 47

60
f j + 9

20
f j+1 − 1

20
f j+2, (2.10)

which could be constructed by the convex combination of the smaller stencils as follow:⎧⎪⎨
⎪⎩

q
(
x j+1/2

) =
∑3

1
C+

i p(x j+1/2),∑3

1
C+

i = 1.
(2.11)

We could get

C+
1 = 1

10
, C+

2 = 3

5
, C+

3 = 3

10
(2.12)

We also need to compute the smoothness measurement, indicated by IS+
i for stencil Si .

This part will be described in detail later. Then we assume

α+
r = C+

r(
ε + I S+

r
)2 (r = 1, 2, 3), (2.13)

and get the weight function

ω+
r = α+

r

α+
1 + α+

2 + α+
3

(r = 1, 2, 3). (2.14)

Finally we can get the WENO reconstruction approximation

f̄ +
j+ 1

2

= ω+
1 p+

1 + ω+
2 p+

2 + ω+
3 p+

3 , (2.15)

and the numerical flux

f̄
j+ 1

2
= f̄ +

j+ 1
2

+ f̄ −
j+ 1

2

. (2.16)

Third order TVD Runge–Kutta method, which is proposed by Shu and Osher [27], is used
for time discretization in this paper. We write Eq. (2.2) as an ordinary differential equation
(ODE) system

ut = L (u) , (2.17)
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where L (u) is a discretization of spatial operator. The general form of third order TVD
Runge–Kutta method is as follow:

u(1) = un + Δt L
(
un)

u(2) = 3

4
un + 1

4
u(1) + 1

4
Δt L

(
u(1)

)

un+1 = 1

3
un + 2

3
u(2) + 2

3
Δt L

(
u(2)

)
.

(2.18)

2.2 Finite Difference HWENO Schemes and CHWENO Schemes for Scalar
Equation

In this section, we firstly introduce the finite difference HWENO scheme of Liu and Qiu [16],
and then use it as our basis to structure finite difference CHWNEO schemes for hyperbolic
conservation laws (1.1). The ideas of HWENO schemes and CHWENO schemes are similar
to WENO schemes, thus here we mainly focus on their different reconstruction processes.

In finite difference HWENO schemes [16], defining v = ux , Liu and Qiu firstly get the
derivative of Eq. (2.1) as follow:

{
ut + f (u)x = 0, u (x, 0) = u0 (x) ,

vt + h(u, v)x = 0, v (x, 0) = v0 (x) ,
(2.19)

where h (u, v) = f (u)x = f ′ (u) ux = f ′ (u) v. To solve (2.19), they use a semi-discrete
conservative approximation of the spatial derivatives:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du j (t)

dt
= −

f̄
j+ 1

2
− f̄

j− 1
2

Δx
,

dv j (t)

dt
= −

h̄
j+ 1

2
− h̄

j− 1
2

Δx
,

(2.20)

where numerical fluxes f̄ j+1/2 and h̄ j+1/2 can be obtained by the following equations:

f̄ j+1/2 = f̄
(
u j−r , . . . , u j+s, v j−r , . . . , v j+s

)
,

h̄ j+1/2 = h̄
(
u j−r , . . . , u j+s, v j−r , . . . , v j+s

)
.

(2.21)

It can be seen that two different numerical fluxes f̄ j+1/2 and h̄ j+1/2 need to be solved
by the function values ui and their derivatives vi in finite difference HWENO scheme by
Liu [16]. Similar to WENO schemes, we take fifth-order HWENO scheme as an example.
Due to the lead-in of derivative values, we could get a fifth-order numerical flux f̄ j+1/2 in
three points based on Hermite polynomials. This method will be introduced in detail later.
Then we can see that HWENO schemes are more compact than WENO schemes because
HWENO schemes use less points to obtain the numerical flux with same order accuracy. But
the drawback is that HWENO schemes need to solve one more numerical flux h̄ j+1/2, and
the method is introduced in [16].

Therefore, in order to simplify the reconstruction procedure andmaintain the compactness
ofHWENOschemes, this paper proposed finite differenceCHWENOschemes, inwhich only
one numerical flux f̄ j+1/2 need to be constructed. In CHWENO schemes, the spatial deriva-
tives are directly approximated by the same semi-discrete conservative form with WENO
schemes:
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du j (t)

dt
= −

f̄
j+ 1

2
− f̄

j− 1
2

Δx
. (2.22)

Similar toHWENOschemes, numerical flux f̄ j+1/2 is structured byui and their derivatives
u′

i as follow:

f̄ j+1/2 = f̄
(

u j−r , . . . , u j+s, u′
j−r , . . . , u′

j+s

)
. (2.23)

But difference is that in CHWENO schemes, the derivatives u′
i are directly obtained by

compact difference schemes [15].
Now we will specifically introduce the reconstruction procedure of numerical flux in

CHWENO schemes.

Step 1. We firstly present the compact difference methods that are used to obtain the deriva-
tive values of function.

1.1 Following the idea of [16], if the finite difference HWENO schemes achieve r th-
order accuracy, the derivative equations should attain (r − 1)th-order accuracy. In
other words, as for a class of fifth-order CHWENO schemes, the compact difference
scheme to solve the derivative values should be at least a fourth-order scheme. Thus,
for the every u j , we choose the fourth-order central compact difference scheme [15]:

1

6
u′

j+1 + 4

6
u′

j + 1

6
u′

j−1 = u j+1 − u j−1

2Δx
(2.24)

as the method to solve the first derivative values of function.
1.2 To ensure the closure of compact difference scheme, some special methods need to

be implemented near the boundary. We first consider a third-order upwind compact
difference scheme [24]:

2

3
u′

j + 1

3
u′

j−1 = 1

6

u j+1 − u j

Δx
+ 5

6

u j − u j−1

Δx
,

1

3
u′

j+1 + 2

3
u′

j = 5

6

u j+1 − u j

Δx
+ 1

6

u j − u j−1

Δx
,

(2.25)

which could reduce the accuracy of the derivative values near the boundary. The
complete algorithm in the whole grid ( j = 1, . . . , n) is as below:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2

3
u′

2 + 1

3
u′

1 = 1

6

u3 − u2

Δx
+ 5

6

u2 − u1

Δx
,

1

6
u′

j+1 + 4

6
u′

j + 1

6
u′

j−1 = u j+1 − u j−1

2Δx
, ( j = 2, . . . , n − 1),

1

3
u′

n + 2

3
u′

n−1 = 5

6

un − un−1

Δx
+ 1

6

un−1 − un−2

Δx
.

(2.26)

In this way we get a set of tridiagonal systems, which is composed of fourth-order
central compact difference scheme in the interior points and third-order upwind
compact difference scheme at the boundary. For simplicity, we term the CHWENO
schemes with this method as CHWENO4 schemes.

1.3 Another method to get the derivative values at the boundary is increasing the function
terms in the right side of equation, which could avoid order reduction. We consider
the eccentric compact difference:

αu′
j−1 + βu′

j = 1

Δx

(
a u j−1 + b u j + c u j+1 + d u j+2

)
. (2.27)
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We let β = 1 without loss generality. Then we get Taylor expansion for the right
terms and get the linear equations as below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + b + c + d = 0,

−a+c + 2d = α + 1,

1

2
a+1

2
c + 2d = −α,

−1

6
a+1

6
c+4

3
d = 1

2
α,

1

24
a+ 1

24
c+2

3
d = −1

6
α.

(2.28)

The coefficients could be gotten by solving the equations, and then we could derive
a fourth-order bias compact difference scheme

1

3
u′

j−1 + u′
j = 1

18Δx

(−17u j−1 + 9u j + 9u j+1 − u j+2
)
, (2.29)

which could be used at the left boundary. Similarly,

u′
j + 1

3
u′

j+1 = 1

18Δx

(
u j−2 − 9u j−1 − 9u j + 17u j+1

)
(2.30)

is used at the right boundary. Therefore, we get the whole algorithm as below:⎧⎪⎪⎨
⎪⎪⎩

1
3u′

1 + u′
2 = 1

18Δx (−17u1 + 9u2 + 9u3 − u4)

1
6u′

j−1 + 4
6u′

j + 1
6u′

j+1 = u j+1−u j−1
2Δx , ( j = 2, · · · , m − 1)

u′
m−1 + 1

3u′
m = 1

18Δx (um−3 − 9um−2 − 9um−1 + 17um) .

(2.31)

Then we can get the derivative values, which maintain uniformly fourth-order accu-
racy at all grid points. For simplicity, we term the CHWENO schemes with this
method as CHWENO5 schemes.

In CHWENO schemes, we solve these tridiagonal systems (2.26), (2.31) by chasing
method, which is more concise than HWENO schemes. In Sect. 4, we will test the
accuracy, stability andother properties of bothCHWNEO4andCHWENO5schemes.

Step 2. Thenwedescribe how to reconstruct the numerical flux f̄ +
j+1/2 by using both function

values u j and first derivative values u′
j gotten in Step 1.

2.1 Firstly, according toLFflux splitting (2.7),we can get the numerical fluxes of function
values and derivative values as below:⎧⎪⎨

⎪⎩
f +

j = 1

2

[
f
(
u j

) + αu j
]

f ′+
j = 1

2

[
f ′ (u j

) + α
]

u′
j

(2.32)

2.2 Unlike the Lagrange interpolation in WENO schemes, Hermite interpolation is used
in the reconstruction of HWENO and CHWENO schemes. In this way, less sten-
cil points are used in the HWENO schemes and CHWENO schemes. We use the
points and derivative values to construct three third-order numerical fluxes and then
use these fluxes to construct a more accurate numerical flux. For this purpose, we
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choose three small stencils S1 = {
I j−1, I j , I ′

j−1
}
, S2 = {

I j , I j+1, I ′
j+1

}
, S3 ={

I j−1, I j , I j+1
}
, which are used to structure a bigger stencil S = S1 ∪ S2 ∪ S3 ={

I ′
j−1, I j−1, I j , I j+1, I ′

j+1
}
.

For the small stencil Si , we use Hermite polynomials to formulate the function pi (x)

to get the function value at the half nodes x j+1/2. Hence, we have

p1
(
x j+1/2

) = −7

6
f +

j−1 + 13

6
f j

+ − 2Δx

3
f ′+

j−1,

p2
(
x j+1/2

) = 1

6
f j

+ + 5

6
f +

j+1 − Δx

3
f ′+

j+1,

p3
(
x j+1/2

) = −1

6
f +

j−1 + 5

6
f j

+ + 1

3
f +

j+1.

(2.33)

For the bigger stencil S, we can also get the function q(x) through Hermite polyno-
mials. Then we get a fifth-order numerical flux

q

(
x

j+ 1
2

)
= − 23

120
f +

j−1 + 19

30
f +

j + 67

120
f +

j+1

−Δx

(
3

40
f ′+

j−1 + 7

40
f ′+

j+1

)
. (2.34)

2.3 On the smooth regions, q(x) has the highest order accuracy in the stencil S, so that
an important step in CHWENO reconstruction is to solve the optimal weights that
combine p1(x), p2(x) and p3(x) into q(x) at x = x j+1/2. The linear weights are
denoted by C+

i for stencil Si satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q
(
x j+1/2

) =
3∑
1

C+
i p(x j+1/2),

3∑
1

C+
i = 1.

(2.35)

By Eq. (2.35) we can get

C+
1 = 9

80
, C+

2 = 42

80
, C+

3 = 29

80
. (2.36)

2.4 For the excellent property near the discontinuities, we also need to compute the
smoothness measurement, indicated by IS+

i for stencil Si . In this paper, we adopt the
method in [22] to calculate the smoothness measurement as follow:

IS+
i =

2∑
l=1

∫ x j+1/2

x j−1/2

(Δx)2l−1
(

∂ l pi

∂xl

)2

dx (2.37)

Through using Eq. (2.37), smoothness measurement expressions are

IS+
1 =

∣∣∣2 (
f +

j − f +
j−1

)
− Δx · (

f ′)+
j−1

∣∣∣2

+13

3

∣∣∣( f +
j − f +

j−1

)
− Δx · (

f ′)+
j−1

∣∣∣2,
IS+

2 =
∣∣∣2 (

f +
j+1 − f +

j

)
− Δx · (

f ′)+
j+1

∣∣∣2
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+13

3

∣∣∣( f +
j+1 − f +

j

)
− Δx · (

f ′)+
j+1

∣∣∣2,
IS+

3 = 1

4

∣∣∣ f +
j+1 − f +

j−1

∣∣∣2 + 13

12

∣∣∣ f +
j+1 − 2 f +

j + f +
j−1

∣∣∣2. (2.38)

2.5 In the smooth regions, we can use the optimal weights to improve the accuracy of
CHWENO schemes, and the information of all stencils is used. While in the regions
near discontinuities, the weights need to be adjusted by increasing the weights of
smoother stencils. The smoother stencil has smaller smoothness measurement and
hence bigger weights. Thus it plays a more important role in the convex combination.
We assume

α+
r = C+

r(
ε + IS+

r

)2 (r = 1, 2, 3), (2.39)

where ε is an extremely low positive number whose purpose is to avoid the denomi-
nator being zero. In this paper, we let ε = 10−6, and it is proved by the tests in [12]
that the result is not sensitive to the value of ε. Then weight function ωr is gained
after normalization processing:

ω+
r = α+

r

α+
1 + α+

2 + α+
3

(r = 1, 2, 3). (2.40)

The CHWENO reconstruction approximation is computed by

f̄ +
j+ 1

2

= ω+
1 p+

1 + ω+
2 p+

2 + ω+
3 p+

3 . (2.41)

The reconstruction of f̄ −
j+1/2 is symmetric to that of f̄ +

j+1/2, and we can get f̄ −
j+1/2

by similar method.
2.6 Finally, the numerical flux can be gained by

f̄
j+ 1

2
= f̄ +

j+ 1
2

+ f̄ −
j+ 1

2

. (2.42)

2.3 CHWENO Schemes for Vector Equations

Then we briefly introduce the extension of the CHWENO schemes to solve one-dimensional
equations. We consider the equations as follow:

∂u
∂t

+ ∂f
∂x

= 0, (2.43)

where u = (
u1 u2 · · · um

)T
, f = (

f1 (u) f2 (u) · · · fm (u)
)T

.
According to the mathematical property of hyperbolic equation, the Jacobian matrix of

numerical flux A = ∂f/∂u can be decomposed as A = RDR−1. In this D is the diagonal
matrix constructed by the eigenvalue of matrix A. R is the invertible matrix constructed by
the eigenvector of matrix A.

We let

q = R−1f Δ= (
q1 q2 · · · qm

)T
, (2.44)

and we can get f = RR−1f = Rq.
Then theCHWENOschemes in Sect. 2.2 are applied to every component of vectorq. Thus,

we can use CHWENO schemes to solve the vector equations. In Sect. 4, some numerical
experiments like one-dimensional Euler equations are solved in this way.
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3 Descriptions of CHWENO Schemes in Two Dimensional Case

In this section, we develop the scheme in Sect. 2 to solve the two dimensional nonlinear
hyperbolic conservation laws. First we consider 2D scalar equations{

ut + f (u)x + g(u)y = 0, (x, y) ∈ R2, t ∈ (0,∞)

u(x, y, 0) = u0(x, y), (x, y) ∈ R2,
(3.1)

where u(x, y, t) is a conserved quantity, and f (u(x, y, t)) and g(u(x, y, t)) describes its flux
in x direction and y direction, respectively. We define x j = jΔx, yk = kΔy.

In the finite difference HWENO schemes by Liu [16], they define v = ux , w = uy , taking
the derivative x and y of (3.1) separately, and then get the whole equations form as below:

⎧⎪⎨
⎪⎩

ut + f (u)x + g(u)y = 0,

vt + h(u, v)x + r(u, v)y = 0,

wt + q(u, w)x + s(u, w)y = 0,

(3.2)

where

h (u, v) = f ′ (u) v, r (u, v) = g′ (u) v,

q (u, w) = f ′ (u) w, s (u, w) = g′ (u)w.

Again they approximate (3.2) by the following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du j,k (t)

dt
= −

f̄
j+ 1

2 ,k
− f̄

j− 1
2 ,k

Δx
−

ḡ
j,k+ 1

2
− ḡ

j,k− 1
2

Δy
,

dv j,k (t)

dt
= −

h̄
j+ 1

2 ,k
− h̄

j− 1
2 ,k

Δx
−

r̄
j,k+ 1

2
− r̄

j,k− 1
2

Δy
,

dw j,k (t)

dt
= −

q̄
j+ 1

2 ,k
− q̄

j− 1
2 ,k

Δx
−

s̄
j,k+ 1

2
− s̄

j,k− 1
2

Δy
,

(3.3)

where numerical fluxes f̄i±1/2, j , ḡi, j±1/2, h̄i±1/2, j and s̄i, j±1/2, were straightforward recon-
structed by the one dimensional methods in a dimension-by-dimension fashion. However,
because of the existence of derivative equations, the key point of extendingHWENO schemes
to two dimensional cases is to construe the fluxes of mixed derivative terms, q̄i±1/2, j and
r̄i, j±1/2. In [16], a 3-point WENO reconstruction is implemented in the mixed derivative
terms and reduces the accuracy of two dimensional HWENO schemes to fourth order.

In finite difference CHWENO schemes, the derivative values are obtained by more con-
venient methods, compact difference schemes. So we do not need to reconstruct the fluxes
of mixed derivative terms or reduce the accuracy order of schemes. In other words, we can
use CHWENO schemes in a dimension-by-dimension fashion, just like WENO schemes,
to solve the numerical fluxes in both x and y direction. Therefore, we directly obtain the
semi-discrete conservative form of (3.1) as follow:

du j,k (t)

dt
= −

f̄
j+ 1

2 ,k
− f̄

j− 1
2 ,k

Δx
−

ḡ
j,k+ 1

2
− ḡ

j,k− 1
2

Δy
, (3.4)

where the numerical fluxes f̄ j±1/2,k, ḡ j,k±1/2 can be straightforward reconstructed by the
CHWENO schemes in Sect. 2.
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Thus it can be seen that in the two dimensional cases, CHWENO schemes have two
major advantages over HWENO schemes. One is the efficiency, which means that there are
only two fluxes reconstructed in CHWENO schemes, while six numerical fluxes need to
be reconstructed in HWENO schemes. The other merit is that CHWENO schemes maintain
fifth-order accuracy, while HWENO schemes have to reduce the accuracy to fourth order. The
two-dimensional vector equations are solved in the same way of one-dimensional equations.
For simplicity, they will not be described in details. In Sect. 4, we will test the accuracy and
other properties of two dimensional CHWENO5 schemes.

4 Numerical Results

In this section, a number of numerical experiments are implemented to test the performance
of finite difference CHWENO schemes. In order to facilitate the contrast analysis, HWENO
schemes are also tested under the same conditions in every numerical experiment. For all
the numerical tests in this paper, the third-order Runge–Kutta method (2.18) is used as time-
stepping scheme, and CFL is set to be 0.8 in every test, except for the accuracy tests, where
the time step is reduced to guarantee that spatial error dominates. Besides, we find that CFL
number has little effect on the computing results of CHWENO5 schemes.

4.1 Scalar Conversation Laws in One Dimension

Example 4.1 The linear advection problem We consider the linear advection equation:
{

ut + ux = 0, −1 ≤ x < 1, t > 0,
u(x, 0) = u0(x).

(4.1)

The exact solution of this equation is u(x, t) = u0(x − t).
We would like to test the accuracy of CHWENO schemes by this problem. For this reason,

we use CHWENO schemes to solve this problem with the initial condition:

u (x, 0) = sin(πx). (4.2)

The boundary condition we used is periodic boundary condition.We compute the solution
up to t = 2 with 10, 20, 40, 80, 160, 320 grid points, respectively. The L1, L∞ errors and
numerical orders by CHWENO4, CHWENO5 and HWENO5 schemes are shown in Table
1.

From the Table 1, we can see that both HWENO5 and CHWENO5 schemes achieve
their designed order of accuracy. Under the same grid numbers, the numerical errors by
CHWENO5 schemes are similar to that of HWENO5 schemes. However, CHWENO4 is a
fourth-order scheme. Thus, the computing accuracy of whole schemes can be affected by
the computing methods at the boundary. In order to get a fifth-order CHWENO scheme,
fourth-order derivative values should be obtained in both interior points and boundaries.

Example 4.2 Convex f(u) with smooth initial data In this example, we test CHWENO schemes
on nonlinear Burgers’ equation

{
ut + (

u2/2
)

x = 0,
u (x, 0) = 0.5 + sin (πx) ,

(4.3)

with periodic boundary conditions.
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Table 1 Linear equation N L1 error Order L∞ error Order

HWENO5

10 1.52E−02 2.50E−02

20 5.70E−04 4.735000 1.14E−03 4.459242

40 1.70E−05 5.070433 3.35E−05 5.083640

80 5.28E−07 5.004165 1.08E−06 4.956649

160 1.65E−08 4.997505 3.25E−08 5.052796

320 5.22E−10 4.986068 9.71E−10 5.066969

CHWENO4

10 1.81E−02 2.87E−02

20 1.31E−03 3.787250 2.29E−03 3.644104

40 7.52E−05 4.120346 1.28E−04 4.164600

80 4.37E−06 4.103622 7.17E−06 4.156436

160 2.60E−07 4.071024 4.18E−07 4.099403

320 1.53E−08 4.083894 2.43E−08 4.105372

CHWENO5

10 2.12E−02 3.53E−02

20 6.94E−04 4.933278 1.37E−03 4.684848

40 1.98E−05 5.127338 4.02E−05 5.093878

80 5.90E−07 5.072605 1.17E−06 5.107150

160 1.79E−08 5.045820 3.40E−08 5.102311

320 5.52E−10 5.014348 9.87E−10 5.104031

L1, L∞ errors and numerical
orders of accuracy are measured
at each point. Using N equally
divided cells

The solution is still smooth when T = 0.5/π , and the numerical errors and accuracy
orders by CHWENO4, CHWENO5 and HWENO schemes are shown in Table 2. We can see
that the CHWENO4 and CHWENO5 schemes achieve their designed accuracy orders. The
errors and accuracy orders of CHWENO5 schemes are similar to HWENO5 schemes under
the same grids. When T = 1.5/π , the discontinuity occurs in the solution. So we show the
numerical results of CHWENO schemes and HWENO schemes with N = 80 in Fig. 1. We
can see that in this case CHWENO schemes and HWENO schemes have similar resolution.

4.2 Euler System of Gas Dynamics in One Dimension

In this subsection, CHWENO schemes are used to solve the one dimensional system of the
Euler equations for gas dynamic in conservation form:

∂u
∂t

+ ∂f
∂x

= 0, (4.4)

where

u =
⎛
⎝ ρ

ρu
E

⎞
⎠ , f =

⎛
⎝ ρu

ρu2 + p
(E + p) u

⎞
⎠ . (4.5)

Here ρ is the density, p is the pressure, u is the velocity in x direction and E is the total
energy. And the ideal gas equation is E = 1

γ−1 p + 1
2ρu2 with γ = 1.4. For simplicity, the
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Table 2 Burgers’ equation N L1 error Order L∞ error Order

HWENO5

10 1.47E−02 6.67E−02

20 1.20E−03 3.612764 7.90E−03 3.078595

40 5.20E−05 4.532623 4.77E−04 4.048760

80 1.68E−06 4.955303 1.66E−05 4.843418

160 6.10E−08 4.781522 6.49E−07 4.678246

320 1.73E−09 5.139145 3.17E−08 4.357938

CHWENO4

10 1.79E−02 8.43E−02

20 2.38E−03 2.911245 1.35E−02 2.646531

40 1.71E−04 3.796341 1.60E−03 3.072645

80 7.89E−06 4.439976 7.47E−05 4.419762

160 4.81E−07 4.034124 5.12E−06 3.868791

320 2.76E−08 4.124956 4.72E−07 3.439106

CHWENO5

10 1.59E−02 7.51E−02

20 1.21E−03 3.715947 7.89E−03 3.249578

40 4.64E−05 4.704738 4.64E−04 4.088143

80 1.47E−06 4.980236 1.41E−05 5.040851

160 5.43E−08 4.758720 6.41E−07 4.458019

320 1.59E−09 5.093853 3.20E−08 4.326684

L1, L∞ errors and numerical
orders of accuracy are measured
at each point. Using N equally
divided cells

Fig. 1 Numerical solution of the
Burgers’ equation as computed
by the CHWENO4, CHWENO5
and HWENO5 with N = 80 at
T = 1.5/π

Jacobian matrix, eigenvalue and eigenvectors that are used to solve this problem will not be
shown in this paper.

Example 4.3 Accuracy tests Firstly, we would like to verify the accuracy order of CHWENO
schemes when they are applied to solve the nonlinear system of Euler equations (4.4).
We define the computing domain as [−1, 1] and the initial condition as ρ (x, 0) =
1 + 0.2 sin(πx), p (x, 0) = 1, u (x, 0) = 1. Periodic boundary conditions are used for
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Table 3 Euler equations N L1 error Order L∞ error Order

HWENO5

10 5.42E−03 8.54E−03

20 2.58E−04 4.392204 4.35E−04 4.295255

40 7.92E−06 5.028191 1.53E−05 4.829948

80 2.45E−07 5.011577 4.76E−07 5.005527

160 7.85E−09 4.966784 2.17E−08 4.457474

CHWENO4

10 6.80E−03 9.75E−03

20 4.02E−04 4.077986 6.45E−04 3.917224

40 1.87E−05 4.430208 3.70E−05 4.125907

80 9.47E−07 4.300453 1.55E−06 4.571525

160 5.30E−08 4.160940 8.44E−08 4.203335

CHWENO5

10 6.52E−03 9.33E−03

20 2.68E−04 4.605302 4.56E−04 4.356060

40 8.03E−06 5.059929 1.56E−05 4.871055

80 2.54E−07 4.983420 4.93E−07 4.979735

160 9.67E−09 4.714793 1.96E−08 4.655806

L1, L∞ errors and numerical
orders of accuracy are measured
at each point. Using N equally
divided cells

Table 4 CPU time in seconds
for HWENO and CHWENO
schemes for Euler equations

N CHWENO4 CHWENO5 HWENO5

100 0.68 0.65 0.83

400 10.74 10.25 11.36

1600 163.26 161.10 178.63

both the function values and derivative values. The exact solution of this problem is
ρ (x, t) = 1 + 0.2 sin(π(x − t)), p (x, t) = 1, u (x, t) = 1.

We also get the results at t = 2 on uniform meshes having 10, 20, 40, 80, 160 points for
HWENO and CHWENO schemes. In Table 3, we contrast the numerical errors of the density
ρ by CHWENO schemes with HWENO schemes. One can obviously find that CHWENO5
and HWENO5 achieve fifth order of accuracy when they are applied to solve nonlinear Euler
system, while CHWENO4 is still a fourth-order scheme. Then we display the CPU time of
CHWENO4, CHWENO5 and HWENO schemes in Table 4. We observe that CHWENO4
and CHWENO5 schemes are a bit faster than HWENO5 scheme, which could save about
10% of CPU time.

Then we test the characteristics of CHWENO schemes with the problems involving very
strong discontinuities.

Example 4.4 Riemann Initial value Problems: Lax and sod’s problem In this example, we test
CHWENO schemes by two well-known problems of the Riemann initial value problems:

u (x, 0) =
{
uL , x < 0

uR, x > 0
. (4.6)
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Fig. 2 Numerical solution of the Lax problem with the Riemann initial condition as computed by the
CHWENO4, CHWENO5 and HWENO5 with N = 200

One of the Riemann initial problems is Lax problems, whose initial conditions in the left
and the right stages of the shock are:

{
(ρL , uL , pL ) = (0.445, 0.698, 3.528) , x < 0,
(ρR, u R, pR) = (0.5, 0, 0.571) , x > 0.

(4.7)

The other of the Riemann initial problems is Sod’s problems, whose initial conditions in
the left and the right stages of the shock are:

{
(ρL , uL , pL ) = (1, 0, 1) , x < 0,
(ρR, u R, pR) = (0.125, 0, 0.1) , x > 0.

(4.8)

We define the final time as t = 1.3 (for Lax problem) and t = 2 (for Sod’s problem)
for both problems separately. The computational domain is [0, 10], and the dividing line is
x = 5. The constant boundary conditions are used for both function values and derivative
values. The numerical results are presented in Figs. 2 and 3, where symbols denote the
numerical results and solid lines denote the exact solution. From the figures we can see that
all the schemes maintain good characteristics in all flow fields. There is no oscillation near
the discontinuities and we can get a sharp transition. Besides, we can see that CHWENO
schemes improve the resolution of shock waves because of the compactness of CHWENO
schemes.
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Fig. 3 Numerical solution of the Sod’s problem with the Riemann initial condition as computed by the
CHWENO4, CHWENO5 and HWENO5 with N = 200

Example 4.5 The shock density wave interaction problem In this example, we consider the
problem that involves both shocks and complex smooth regions.Weneed to solve the equation
with a moving shock interacting with the sine waves in density, which is defined by the
following initial conditions:

(ρ, u, p) =
{

(3.857143, 2.62936, 10.333333) , x < 1.0,

(1.0 + 0.2 sin (5x) , 0, 1.0) , x > 1.0,
(4.9)

where the computational domain is [0, 10]. We take periodic boundary for this problem, and
the final time is t = 1.8. The results of CHWENO and HWENO schemes are compared
under the same grid number N = 300. The exact solution of this problem is a converged
solution computed by WENO5 with 2000 grid points.

Like other problems with shock and disconnect, what we really care are the resolution and
sharp transition of the solution. FromFig. 4, we can see that the results of CHWENO schemes
are more consistent with the exact solution than that of HWENO schemes, particularly at the
waves near the shock. Thus through this example, we can verify the stability and accuracy
of CHWENO schemes at the presence of shock and entropy waves. And the improvement of
resolution in CHWENO schemes is apparent.

Then we also display the CPU times of CHWENO schemes and HWENO schemes on
solving Lax, Sod’s and Shu-Osher problem in Table 5. We can see that in one dimensional
cases, CHWENO schemes can improve the computational efficiency in some extent because
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Fig. 4 Numerical solution of the Shu and Osher problem with the Riemann initial condition as computed by
the CHWENO4, CHWENO5 and HWENO5 with N = 300

Table 5 CPU time in seconds for HWENO and CHWENO schemes

N CHWENO4 CHWENO5 HWENO5

Lax problem 200 0.56 0.56 0.64

800 8.68 8.69 9.28

Sod’s problem 200 0.41 0.42 0.47

800 6.29 6.28 7.09

Shu and Osher problem 200 0.79 0.76 0.86

800 12.12 12.20 13.12

we need to solve only one flux in CHWENO schemes but two fluxes in HWENO schemes.
However, the efficiency of CHWENO schemes is not obvious because we also need to use
compact difference schemes to obtain the derivative values. The efficiency of CHWENO
schemes is more apparent in two dimensional cases, and we will show it in the next test.

4.3 Euler System of Gas Dynamics in two Dimensions

In this subsection, we test the CHWENO schemes in two dimensional cases. Firstly, the
accuracy of CHWENO schemes is verified. Then, some numerical problems with complex
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solution and discontinuities are used to test the characteristics of CHWENO schemes when
there are strong discontinuities in the calculation. The conservation form of two dimensional
Euler equations is as follow:

∂q
∂t

+ ∂f
∂x

+ ∂g
∂y

= 0, (4.10)

where

q =

⎛
⎜⎜⎝

ρ

ρu
ρv

E

⎞
⎟⎟⎠ , f =

⎛
⎜⎜⎝

ρu
ρu2 + p

ρuv

(E + p)u

⎞
⎟⎟⎠ , g =

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p
(E + p)v

⎞
⎟⎟⎠ . (4.11)

Here ρ is the density, p is the pressure, u is the velocity in x direction, v is the velocity in y
direction and E is the total energy. And the ideal gas equation is E = 1

γ−1 p + 1
2ρ

(
u2 + v2

)
with γ = 1.4. For simplicity, the Jacobian matrix, eigenvalue and eigenvectors that are used
to solve this problem will not be shown in this paper. In every numerical test, we will only
show the results by CHWENO5 scheme because the solution of CHWENO4 scheme is the
same as CHWENO5 scheme.

Example 4.6 Accuracy tests Firstly, we would like to verify the accuracy order of CHWENO
schemes when they are applied to solve the two dimensional nonlinear system of Euler
equations (4.10). We define the computing domain as [0, 2]× [0, 2] and the initial condition
as ρ (x, y, 0) = 1 + 0.2 sin(π(x + y)), p (x, y, 0) = 1, u (x, y, 0) = 0.7, v (x, y, 0) = 0.3.
Periodic boundary conditions are used for both the function values and derivative values. The
exact solution of this problem isρ (x, y, 0) = 1+0.2 sin(π((x+y)−(u+v)t)), p (x, y, t) =
1, u (x, y, t) = 0.7, v (x, y, t) = 0.3.

We get the results at t = 2 on uniform meshes having 10 × 10, 20 × 20, 40 × 40, 80 ×
80, 160 × 160 points for HWENO and CHWENO schemes. In Table 6, we contrast the
numerical errors of the density ρ by CHWENO schemes with those by HWENO schemes.
One can obviously find that CHWENO5 achieves fifth order of accuracy when applied to
solve two dimensional nonlinear Euler system, while CHWENO4 and HWENO schemes are
still fourth-order schemes. Besides, the accuracy order of HWENO schemes can not achieve
fourth order accuracy in the case of low mesh numbers, which can be also observed in [16].
Thus comparing with the HWENO schemes, in two dimensional cases, the extension of
CHWENO schemes from one dimensional cases to two dimensional cases does not reduce
the order of accuracy.

Then we display the CPU time of HWENO and CHWENO schemes for solving two
dimensional Euler equations in Table 7. From it we can see the CHWENO schemes are
about two times as fast as HWENO schemes for 2D Euler problem. CHWENO schemes
greatly improve the efficiency in two dimensional cases because HWENO schemes need to
solve more numerical fluxes, including two mixed derivative terms which do not appear in
CHWENO schemes.

Example 4.7 2D Riemann problem In this example, we test the characteristics of two dimen-
sional CHWENO schemes when solving problems with strong discontinuities, i.e. two
dimensional Riemann problems. In this paper, we solve four two dimensional Riemann
problems, whose initial conditions are as follow, respectively:
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Table 6 The two-dimensional
Euler equations

N × M L1 error Order L∞ error Order

HWENO

10 × 10 2.01E−02 3.50E−02

20 × 20 4.57E−03 2.132785 1.17E−02 1.579210

40 × 40 1.53E−03 1.583913 4.40E−03 1.410472

80 × 80 8.06E−05 4.241868 2.55E−04 4.107023

160 × 160 5.00E−06 4.012415 1.45E−05 4.142834

CHWENO4

10 × 10 1.04E−02 1.72E−02

20 × 20 5.69E−04 4.189843 1.12E−03 3.934719

40 × 40 2.41E−05 4.561021 6.01E−05 4.222138

80 × 80 1.15E−06 4.395931 3.30E−06 4.184895

160 × 160 6.67E−08 4.102191 2.10E−07 3.978161

CHWENO5

10 × 10 9.38E−03 1.44E−02

20 × 20 4.15E−04 4.497391 7.03E−04 4.351672

40 × 40 1.26E−05 5.046754 2.45E−05 4.840723

80 × 80 4.00E−07 4.971863 8.02E−07 4.935174

160 × 160 1.32E−08 4.924857 3.13E−08 4.681271

L1, L∞ errors and numerical
orders of accuracy are measured
at each point. Using N × M
equally divided cells

Table 7 CPU time in seconds
for HWENO and CHWENO
schemes for two dimensional
Euler equations

N × M CHWENO4 CHWENO5 HWENO

10 × 10 1.20 1.21 2.07

40 × 40 57.86 59.05 98.69

160 × 160 3573.29 3500.83 5902.25

a.(ρ, u, v, p)T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0.5313, 0, 0, 0.4)T , x > 0.5, y > 0.5,

(1, 0.7276, 0, 1)T , x < 0.5, y > 0.5,

(0.8, 0, 0, 1)T , x < 0.5, y < 0.5,

(1, 0, 0.7276, 1)T , x > 0.5, y < 0.5,

(4.12)

b.(ρ, u, v, p)T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 0.1, 0, 1)T , x > 0.5, y > 0.5,

(0.5313, 0.8276, 0, 0.4)T , x < 0.5, y > 0.5,

(0.8, 0.1, 0, 0.4)T , x < 0.5, y < 0.5,

(0.5313, 0.1, 0.7276, 0.4)T , x > 0.5, y < 0.5,

(4.13)

c.(ρ, u, v, p)T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0.5313, 0.1, 0.1, 0.4)T , x > 0.5, y > 0.5,

(1.0222,−0.6179, 0.1, 1)T , x < 0.5, y > 0.5,

(0.8, 0.1, 0.1, 1)T , x < 0.5, y < 0.5,

(1, 0.1, 0.8276, 1)T , x > 0.5, y < 0.5,

(4.14)
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Fig. 5 Numerical solution of the four Riemann problems computed by CHWENO5with N ×M = 400×400.
30 equally spaced density contours are plotted, respectively

d.(ρ, u, v, p)T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 0.75, −0.5, 1)T , x > 0.5, y > 0.5,

(2, 0.75, 0.5, 1)T , x < 0.5, y > 0.5,

(1,−0.75, 0.5, 1)T , x < 0.5, y < 0.5,

(3,−0.75,−0.5, 1)T , x > 0.5, y < 0.5,

(4.15)

The computational domain is defined to be [0, 1]× [0, 1], with 400×400 grid points. The
final times are a. t = 0.25, b. t = 0.3, c. t = 0.2, d. t = 0.3 for the four Riemann problems,
respectively. The numerical results of CHWENO5 are shown in Fig. 5. It can be obviously
seen that the results by CHWENO schemes are comparable with HWENO schemes in [16]
and the structures of shock wave are well captured by CHWENO schemes. Thus we can
prove that two dimensional CHWENO schemes keep good characteristics when applied to
solve the problems with strong discontinuities.

Example 4.8 A Mach 3 wind tunnel with a step This model problem begins with uniform
Mach 3 flow in a wind tunnel containing a step and has been introduced in detail in [29]. The
setup of the problem is following: The wind tunnel is 1 length unit wide and 3 length units
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Fig. 6 Forward step problem with N × M = 240×80. 30 equally spaced density and pressure contours form
0.32 to 6.3 and from 0.35 to 13, separately

long. The step is 0.2 length units high and is located 0.6 length units from the left-hand end of
the tunnel. The problem is initialized by a right-goingMach 3 flowwith the initial conditions,
(p, ρ, u, v) = (1, 1.4, 3, 0). Along the walls of the tunnel reflecting boundary conditions are
applied. At the left is a flow-in boundary condition, and at the right all gradients are assumed
to vanish. As for the singular point, we use the same methods in [29]. In Fig. 6, we show
the density component obtained by CHWENO5 schemes at t = 4.0 with 30 equally spaced
density contours from 0.32 to 6.3, pressure contours from 0.35 to 13. We can see that the
results of CHWENO5 scheme perform well and are similar to that of HWENO5 in [16].

Example 4.9 Double Mach reflection This problem is also originally from [29]. The flow
can be set up experimentally by driving a shock down a tube which contains a wedge.
The computational domain of this problem is [0, 4] × [0, 1]. Our test problem involves a
Mach 10 shock in air (γ = 1.4) which initially makes a 60 angle with a reflecting wall at
x = 1/6, y = 0. The undisturbed air ahead of the shock has a density of 1.4 and a pressure
of 1. The region from x = 0 to x = 1/6 along the bottom boundary at y = 0 is always
assigned values for the initial post-shock flow, and the reflective boundary condition is used
for the rest. The left-hand boundary is also assigned values for the initial post-shock flow,
and at the right-hand boundary, at x = 4, all gradients are set to zero. At the top boundary,
the flow values are set to describe the exact motion of a Mach 10 shock. The flow at time
0.2, computed by CHWENO5 scheme with two different uniform meshes 480 × 120 and
960 × 240, is displayed in Fig. 7. Only the region between x = 0 and x = 3 is showed in
the figure, although the grid continues to x = 4. Comparing with the results of HWENO5 in
[16], we see that CHWENO schemes resolve the two Mach stems well.

Example 4.10 Shock vortex interaction In this example, we use the CHWENO schemes to
test the problem of the interaction between a stationary shock and vortex. The computational
domain is [0, 2] × [0, 1]. A stationary Mach 1.1 shock is positioned at x = 0.5 and normal
to the x-axis. The initial left state is (p, ρ, u, v) = (

1, 1, 1.1
√

γ , 0
)
. Its right state can be

easily confirmed by Rankine–Hugoniot condition. A small vortex is superposed to the flow
left to the shock and centers at (xc, yc) = (0.25, 0.5). We define the vortex as a perturbation
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Fig. 7 Density plot for double mach reflection with two different meshes. 30 equally spaced density contours
from 0.9 to 22.6

Fig. 8 2D shock vortex interaction. Pressure. 30 contours for a–c and e, d 90 contours. a t = 0.05, b t = 0.2,
c t = 0.35, d t = 0.6, e t = 0.8

to the velocity (u, v), temperature T = (p/ρ) and entropy S = ln (p/ργ ) of the mean flow
and we can denote them by the following values:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũ = ετeα
(
1−τ 2

)
sin θ,

ṽ = −ετeα
(
1−τ 2

)
cos θ,

T̃ = − (γ−1)ε2e2α(1−τ2)
4αγ

,

S̃ = 0,

(4.16)
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where τ = r/rc, r =
√

(x − xc)
2 + (y − cc)

2, ε = 0.3, rc = 0.05, α = 0.204. Here ε

indicates the strength of the vortex, α controls the decay rates of the vortex, and rc is the
critical radiuswhere the vortex has themaximum strength.We can seemore details in [12,26].

In our test, we use a uniform grid of 251×100 in the computational domain. The reflective
boundary conditions are used at the upper and lower boundaries. The in/out flow bound-
ary conditions are applied at the left/right boundaries. The pressure contours obtained by
CHWENO5 scheme at t = 0.05, t = 0.2, t = 0.35, t = 0.6, t = 0.8 are shown in Fig. 8.
We can see that CHWENO schemes can capture the vortex and shock well.

5 Concluding Remarks

Finite volume HWENO schemes were firstly introduced by Qiu and Shu [22,23] in 2004,
and finite difference HWENO schemes were proposed by Liu and Qiu [16,17] in 2015.
In this paper, we present a class of finite difference CHWENO schemes, which aim to
simplify the reconstruction procedure of HWENO schemes. CHWENO reconstruction uses
Hermite polynomials like HWENO schemes, but the derivative terms are straightforward
obtained by compact difference schemes, which can considerably increase the computing
speed, especially in two dimensional cases. Due to the different compact difference schemes
which are used at boundary, we propose twomethods, CHWENO4 andCHWENO5 schemes.
Through numerical experiments, we find that CHWENO4 scheme is a fourth-order scheme
andCHWENO5 is a fifth-order scheme, whichmeans that treatmentmethods at boundary can
affect the accuracy of whole scheme. Comparing with WENO schemes, CHWENO schemes
maintain the compactness ofHWENOschemes. For instance, only three points are needed in a
fifth-order HWENO and CHWENO reconstruction, while five points are used in a fifth-order
WENO reconstruction. And the good characteristics near discontinuities, like non-oscillatory
property of WENO schemes, are well preserved in CHWENO schemes. Comparing with
HWENOschemes,CHWENOschemes not only greatly improve the efficiency of calculation,
but also avoid the order reduction of schemes in two dimensional cases.
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