Skip to main content
Log in

HWENO Schemes Based on Compact Differencefor Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, in order to simplify the high order Hermite weighted essentially non-oscillatory (HWENO) finite difference schemes of Liu and Qiu (J Sci Comput 63:548–572, 2015), a new type of HWENO schemes based on compact difference schemes, termed CHWENO (compact HWENO) schemes, is proposed for solving both one and two dimensional hyperbolic conservation laws. The idea of reconstruction in CHWENO schemes is similar to HWENO schemes, however the first derivative values of solution are solved by the compact difference method and only one numerical flux is used in CHWENO schemes, while the derivative equation is needed to be solved and two numerical fluxes are used in HWENO schemes. Compared with the original finite difference weighted essentially non-oscillatory schemes, CHWENO schemes maintain the compactness of HWENO schemes, which means that only three points are needed for a fifth order CHWENO schemes. Compared with the HWENO schemes, CHWENO schemes avoid solving the complex derivative equations, which can considerably expedite calculating speed. Several numerical tests, including the 1D shock density wave interaction problem and 2D Riemann problem, are presented to demonstrate the efficiency of CHWENO schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams, N.A., Shariff, K.: A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J. Comput. Phys. 127, 27–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Christofi, S.N.: The study of building blocks for essentially non-oscillatory (ENO) schemes. Ph.D. thesis, Brown University (1995)

  4. De, A.K., Eswaran, V.: Analysis of a new high resolution upwind compact scheme. J. Comput. Phys. 218, 398–416 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dennis, S., Hudson, J.: Compact h4 finite-difference approximations to operators of Navier–Stokes type. J. Comput. Phys. 85, 390–416 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gaitonde, D., Shang, J.S.: Optimized compact-difference-based finite-volume schemes for linear wave phenomena. J. Comput. Phys. 138, 617–643 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harten, A., Osher, S.: Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24, 279–309 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iske, A., Sonar, T.: On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions. Numer. Math. 74, 177–201 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jocksch, A., Adams, N.A., Kleiser, L.: An asymptotically stable compact upwind-biased finite-difference scheme for hyperbolic systems. J. Comput. Phys. 208, 435–454 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lafon, F., Osher, S.: High order two dimensional non-oscillatory methods for solving Hamilton–Jacobi scalar equations. J. Comput. Phys. 123, 235–253 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 63, 548–572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws, II: an alternative approach. J. Sci. Comput. 66, 598–624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X., Zhang, S., Zhang, H., Shu, C.W.: A new class of central compact schemes with spectral-like resolution, I: linear schemes. J. Comput. Phys. 248, 235–256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, X., Zhang, S., Zhang, H., Shu, C.W.: A new class of central compact schemes with spectral-like resolution, II: hybrid weighted nonlinear schemes. J. Comput. Phys. 284, 133–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Osher, S., Shu, C.W.: High-order essentially non-oscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method II: two-dimensional case. Comput. Fluids 34, 642–663 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ravichandran, K.: Higher order KFVS algorithms using compact upwind difference operators. J. Comput. Phys. 130, 161–173 (1997)

    Article  MATH  Google Scholar 

  25. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)

    Article  MATH  Google Scholar 

  26. Shu, C.W.: High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    MATH  Google Scholar 

  27. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, J., Qiu, J.: A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes. Sci. China Ser. A Math. 51, 1549–1560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The research was supported by NSFC Grant 91530325.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Wu, SP. HWENO Schemes Based on Compact Differencefor Hyperbolic Conservation Laws. J Sci Comput 76, 1301–1325 (2018). https://doi.org/10.1007/s10915-018-0663-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0663-4

Keywords

Mathematics Subject Classification

Navigation