Skip to main content
Log in

Exact Simulation of the Jump Times of a Class of Piecewise Deterministic Markov Processes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we are interested in the exact simulation of a class of piecewise deterministic Markov processes. We show how to perform an efficient thinning algorithm depending on the jump rate bound. For different types of bounds, we compare theoretically the efficiency of the algorithm (measured by the mean ratio between the total number of jump times generated by thinning and the number of selected ones) and we compare numerically the computation times. We use the thinning algorithm on Hodgkin–Huxley models with Markovian ion channels dynamics to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alfonsi, A., Cancés, E., Turinci, G., Di Ventura, B., Huisinga, W.: Adaptive hybrid simulation of hybrid stochastic and deterministic models for biochemical reactions. ESAIM Proc. 14, 1–13 (2005)

    Article  MATH  Google Scholar 

  2. Anderson, D.F., Ermentrout, B., Thomas, P.J.: Stochastic representation of ion channel kinetics and exact stochastic simulation of neuronal dynamics. J. Comput. Neurosci. 38, 67–82 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bouguet, F.: Quantitative speeds of convergence for exposure to food contaminants. ESAIM: Probab. Stat. 19, 482–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bressloff, P.C.: Stochastic Processes in Cell Biology. Interdisciplinary Applied Mathematics. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  5. Buckwar, E., Riedler, M.G.: An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63, 1051–1093 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chafaï, D., Malrieu, F., Paroux, K.: On the long time behavior of the tcp window size process. Stoch. Process. Their Appl. 120, 1518–1534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, C.C., White, J.A.: Spontaneous action potentials due to channel fluctuations. Biophys. J. 71, 3013–3021 (1996)

    Article  Google Scholar 

  8. Clay, J.R., DeFelice, L.J.: Relationship between membrane excitability and single channel open-close kinetics. Biophys. J. 42, 151–157 (1983)

    Article  Google Scholar 

  9. Cocozza-Thivent, C.: Processus Stochastiques et Fiabilité des Systèmes. Springer, Berlin (1997)

    MATH  Google Scholar 

  10. Crudu, A., Debussche, A., Muller, A., Radulescu, O.: Convergence of stochastic gene networks to hybrid piecewise deterministic processes. The Ann. Appl. Probab. 22(5), 1822–1859 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. 46, 353–388 (1984)

    MATH  Google Scholar 

  12. Davis, M.H.A.: Markov Models and Optimization. Chapman and Hall, London (1993)

    Book  MATH  Google Scholar 

  13. Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)

    Book  MATH  Google Scholar 

  14. Ding, S., Qian, M., Qian, H., Zhang, X.: Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin–Huxley model. J. Chem. Phys. 154, 244107 (2016)

    Article  Google Scholar 

  15. Doumic, M., Hoffmann, M., Krell, N., Robert, L.: Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli Soc. Math. Stat. Probab. 21, 1760–1799 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Fox, R.F.: Stochastic versions of the Hodgkin–Huxley equations. Biophys. J. 72, 2068–2074 (1997)

    Article  Google Scholar 

  17. Goldwyn, J.H., Imennov, N.S., Famular, M., Shea-Brown, E: Stochastic differential equation models for ion channels noise in Hodgkin–Huxley neurons. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 83, 041908 (2011)

  18. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  19. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2002)

    Book  MATH  Google Scholar 

  20. Lewis, P.A.W., Shedler, G.S.: Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. Q. 26, 403–413 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mino, H., Rubinstein, J.T., White, J.A.: Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann. Biomed. Eng. 30, 578–587 (2002)

    Article  Google Scholar 

  22. Ogata, Y.: On Lewis’ simulation method for point processes. IEEE Trans. Inf. Theory 27, 23–31 (1981)

  23. Orio, P., Soudry, D.: Simple, fast and accurate implementation of the diffusion approximation algorithm for stochastic ion channels with multiple states. PLoS ONE 7, e36670 (2012)

  24. Pakdaman, K., Thieullen, M., Wainrib, G.: Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. Appl. Probab. 42, 761–794 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Riedler, M.G.: Almost sure convergence of numerical approximations for piecewise deterministic Markov processes. J. Comput. Appl. Math. 239, 50–71 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rubinstein, J.T.: Threshold fluctuations in an N sodium channel model of the node of ranvier. Biophys. J. 68, 779–785 (1995)

    Article  Google Scholar 

  27. Skaugen, E., Walloe, L.: Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin–Huxley equations. Acta Phys. 107, 343–363 (1979)

    Google Scholar 

  28. Veltz, R.: A New Twist for the Simulation of Hybrid Systems Using the True Jump Method. arXiv[math] (2015)

  29. Verveen, A.A., Derksen, H.E.: Fluctuation phenomena in nerve mebrane. Proc. IEEE 56, 906–916 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Thomas.

Appendix

Appendix

In this section we compute the rate of acceptance for the thinning of Poisson processes. Let N and \(\tilde{N}\) be two Poisson processes with jump rate \(\lambda \) and \(\tilde{\lambda }\) respectively and jump times \((T_{n})_{n\ge 1}\) and \((\tilde{T}_{n})_{n\ge 1}\) respectively. Assume that N is the thinning of \(\tilde{N}\). Since \(\mathbb {P}(\tilde{N}_{t}=0)=e^{-\int _{0}^{t}\tilde{\lambda }(s)ds}\), we define the rate of acceptance by \(\mathbb {E}[N_{t}/\tilde{N}_{t}|\tilde{N}_{t}\ge 1]\). In the case of Poisson processes this indicator takes the following form

$$\begin{aligned} \mathbb {E}[\frac{N_{t}}{\tilde{N}_{t}}|\tilde{N}_{t}\ge 1]=\frac{\int _{0}^{t}\lambda (s)ds}{\int _{0}^{t}\tilde{\lambda }(s)ds}. \end{aligned}$$
(21)

To get (21), we use the following result which is similar to the n-uplet of non-ordering uniform variables in the Poisson homogeneous case

$$\begin{aligned} f_{(\tilde{T}_{1},\ldots ,\tilde{T}_{n}|\tilde{N}_{t}=n)}(t_{1},\ldots ,t_{n})=\frac{\tilde{\lambda }(t_{1})\ldots \tilde{\lambda }(t_{n})}{\left( \int _{0}^{t}\tilde{\lambda }(s)ds\right) ^n}{} \mathbf 1 _{(t_{1},\ldots ,t_{n})\in {[0,t]^{n}}}. \end{aligned}$$
(22)

Equation (22) gives an explicit formula of the conditional density of the vector \((\tilde{T}_{1},\ldots ,\tilde{T}_{n}|\tilde{N}_{t}=n)\). Note that we do not consider any ordering in points \((\tilde{T}_{k})_{0\le {k}\le {n}}\) and that conditionally on \(\{\tilde{N}_{t}=n\}\), the points \(\tilde{T}_{1},\ldots ,\tilde{T}_{n}\) are independent with density \(\left( \tilde{\lambda }(s)/\int _{0}^{t}\tilde{\lambda }(u)du\right) \mathbf 1 _{s\in {[0,t]}}\). By noting that, for \(k\le {n}\),

$$\begin{aligned}&\{N_{t}=k|\tilde{N}_{t}=n\}\\&\quad =\bigcup _{1\le {i_{1}}<\cdots <i_{k}\le {n}}\left[ \bigcap _{i\in {\{i_{1},\ldots ,i_{k}\}}}\{U_{i}\le {\frac{\lambda }{\tilde{\lambda }}(\tilde{T}_{i})|\tilde{N}_{t}=n}\} \bigcap _{i\in {\{i_{1},\ldots ,i_{k}\}}^{c}}\{U_{i}>\frac{\lambda }{\tilde{\lambda }}(\tilde{T}_{i})|\tilde{N}_{t}=n\}\right] , \end{aligned}$$

where \((U_{i})\) are independent variables uniformly distributed in [0, 1], independent of \((\tilde{T}_{i})\), we deduce that

$$\begin{aligned} \mathbb {P}(N_{t}=k|\tilde{N}_{t}=n)=\left( \begin{array}{c}n\\ k\end{array}\right) \mathbb {P}\left( U_{i}\le {\frac{\lambda }{\tilde{\lambda }}(\tilde{T}_{i})}|\tilde{N}_{t}=n\right) ^{k}\mathbb {P}\left( U_{i}>\frac{\lambda }{\tilde{\lambda }}(\tilde{T}_{i})|\tilde{N}_{t}=n\right) ^{n-k}. \end{aligned}$$
(23)

Thus, the law of the number of selected points is binomial conditionally on the number of generated points. With (22) and (23), one is able to determine that

$$\begin{aligned} \mathcal {L}(N_{t}|\tilde{N}_{t}=n)=\mathcal {B}(n,p), \end{aligned}$$

with \(p=\int _{0}^{t}\lambda (s)ds/\int _{0}^{t}\tilde{\lambda }(s)ds\). Then, we find (21) by using that

$$\begin{aligned} \mathbb {E}[\frac{N_{t}}{\tilde{N}_{t}}|\tilde{N}_{t}\ge 1]=\frac{1}{\mathbb {P}(\tilde{N}_{t}\ge 1)}\sum _{n\ge 1}\frac{1}{n}\mathbb {E}[N_{t}|\tilde{N}_{t}=n]\mathbb {P}(\tilde{N}_{t}=n). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemaire, V., Thieullen, M. & Thomas, N. Exact Simulation of the Jump Times of a Class of Piecewise Deterministic Markov Processes. J Sci Comput 75, 1776–1807 (2018). https://doi.org/10.1007/s10915-017-0607-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0607-4

Keywords

Mathematics Subject Classification

Navigation