Skip to main content
Log in

An Exp Model with Spatially Adaptive Regularization Parameters for Multiplicative Noise Removal

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article proposes a total variation (TV) based model with local constraints for heavy multiplicative noise removal. The local constraint involves multiple local windows rather than one local window as in Chen and Cheng (IEEE Trans Image Process 21(4):1650–1662, 2012), and the proposed model is an extension model of Lu et al. (Appl Comput Harmon Anal 41(2):518–539, 2016) that incorporates a spatially adaptive regularization parameter, which enables us to handle heavy multiplicative noise as well as to sufficiently denoise in homogeneous regions while preserving small details and edges. In addition, convergence analysis such as the existence and uniqueness of a solution for our model is also provided. We also derive an optimization algorithm from the first-order optimality characterization of our model. Furthermore, we utilize a proximal linearized alternating direction algorithm for efficiently solving our subproblem. Numerical results are shown to validate the effectiveness of our model, with comparisons with several existing TV based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen, D.-Q., Cheng, L.-Z.: Spatially adapted total variation model to remove multiplicative noise. IEEE Trans. Image Process. 21(4), 1650–1662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lu, J., Shen, L., Xu, C., Xu, Y.: Multiplicative noise removal in imaging: an exp-model and its fixed-point proximity algorithm. Appl. Comput. Harmon. Anal. 41(2), 518–539 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wagner, R.F., Smith, S.W., Sandrik, J.M., Lopez, H.: Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrason. 30(3), 156–163 (1983)

    Article  Google Scholar 

  4. Schmitt, J.M., Xiang, S., Yung, K.M.: Speckle in optical coherence tomography. J. Biomed. Opt. 4(1), 95–105 (1999)

    Article  Google Scholar 

  5. Lee, J.-S., Hoppel, K.W., Mango, S.A., Miller, A.R.: Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 32(5), 1017–1028 (1994)

    Article  Google Scholar 

  6. Lee, J.-S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980)

    Article  Google Scholar 

  7. Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 157–166 (1982)

    Article  Google Scholar 

  8. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  9. Krissian, K., Westin, C.-F., Kikinis, R., Vosburgh, K.G.: Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Z., Lou, Y., Zeng, T.: Variational multiplicative noise removal by DC programming. J. Sci. Comput. 68(3), 1200–1216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, Y., Zeng, T.: A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Imaging Sci. 6(3), 1598–1625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yun, S., Woo, H.: A new multiplicative denoising variational model based on \(m\)th root transformation. IEEE Trans. Image Process. 21(5), 2523–2533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang, M., Yun, S., Woo, H.: Two-level convex relaxed variational model for multiplicative denoising. SIAM J. Imaging Sci. 6(2), 875–903 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 50(2), 606–616 (2012)

    Article  Google Scholar 

  18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rudin, L., Lions, P.-L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–119. Springer, Berlin (2003)

  20. Grasmair, M.: Locally adaptive total variation regularization. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 331–342. Springer, Berlin (2009)

  21. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Variational denoising of partly textured images by spatially varying constraints. IEEE Trans. Image Process. 15(8), 2281–2289 (2006)

    Article  Google Scholar 

  22. Li, F., Ng, M.K., Shen, C.: Multiplicative noise removal with spatially varying regularization parameters. SIAM J. Imaging Sci. 3(1), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bertalmío, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19(1), 95–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dong, Y., Hintermüller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation applied to compressed sensing: implementation and numerical experiments. J. Comput. Math. 28(2), 170–194 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  31. Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4(2), 288–297 (2010)

    Article  Google Scholar 

  32. Wu, C., Tai, X.-C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Osher, S., Mao, Y., Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. arXiv preprint arXiv:1104.0262

  34. Ouyang, Y., Chen, Y., Lan, G., Pasiliao Jr., E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imaging Sci. 8(1), 644–681 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Woo, H., Yun, S.: Proximal linearized alternating direction method for multiplicative denoising. SIAM J. Sci. Comput. 35(2), B336–B358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dong, F., Zhang, H., Kong, D.-X.: Nonlocal total variation models for multiplicative noise removal using split Bregman iteration. Math. Comput. Model. 55(3), 939–954 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, D.-Q., Cheng, L.-Z.: Fast linearized alternating direction minimization algorithm with adaptive parameter selection for multiplicative noise removal. J. Comput. Appl. Math. 257, 29–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  39. Kornprobst, P., Deriche, R., Aubert, G.: Image sequence analysis via partial differential equations. J. Math. Imaging Vis. 11(1), 5–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Myeongmin Kang was supported by NRF(2016R1C1B1009808). Miyoun Jung was supported by Hankuk University of Foreign Studies Research Fund and NRF(2017R1A2B1005363). Myungjoo Kang was supported by NRF(2014R1A 2A1A10050531, 2015R1A5A1009350) and IITP-MSIT (No. B0717-16-0107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myungjoo Kang.

Appendices

Appendix

The Proof of Lemma 1

Proof

Let us consider a minimizing sequence \(\{u_n\}\) of the problem (45).

Define \(\tilde{\gamma } = \inf (\log (t^2_{\alpha ,\beta } f))\), \(\tilde{\xi } = \sup (\log (t^2_{\alpha ,\beta } f))\), and

$$\begin{aligned} V(u)=V_0(u) +J(u) \quad \text {and} \quad V_0(u) = \int _{\varOmega } \lambda (x)q(u)\,dx. \end{aligned}$$
(54)

For fixed \(x\in \varOmega ,\) let \(v_0(s) = \lambda (x) \left\{ s+f(x)e^{-s}+\alpha \left( \sqrt{\frac{e^s}{f(x)}}-\beta \right) ^2 \right\} \). Then, the function \(v_0(s)\) has the unique minimum value at \(s = \log (t^2_{\alpha ,\beta }f(x))\). In addition, v(s) decreases on \((-\infty , \log (t^2_{\alpha ,\beta }f(x)]\) and increases on \([\log (t^2_{\alpha ,\beta }f(x)), \infty )\). This implies that if \(M_1 \geqslant \log (t^2_{\alpha ,\beta }f(x))\) and \(M_2 \leqslant \log (t^2_{\alpha ,\beta }f(x))\), then \( v_0(\min (s, M_1)) \leqslant v_0(s)\) and \(v_0(\max (s,M_2)) \leqslant v_0(s). \) This yields that

$$\begin{aligned} V_0(\inf (u,\tilde{\xi })) \leqslant V_0(u) \quad \text {and}\quad V_0(\sup (u,\tilde{\gamma })) \leqslant V_0(u). \end{aligned}$$

Moreover, by Lemma 1 in [39], we have that \(J(\inf (u,\tilde{\xi })) \leqslant J(u)\) and \(J(\sup (u,\tilde{\gamma })) \leqslant J(u)\), which yields that

$$\begin{aligned} V(\inf (u,\tilde{\xi })) \leqslant V(u) \quad \text {and}\quad V(\sup (u,\tilde{\gamma })) \leqslant V(u). \end{aligned}$$
(55)

In a word, we can assume that \( \tilde{\gamma } \leqslant u_n \leqslant \tilde{\xi }\), we have \(\{u_n\}\in L^1(\varOmega )\). Since \(\{u_n\}\) is a minimizing sequence of V, \(V(u_n)\) is bounded. Further, from the (32), \(V_0(u_n) \geqslant K\) for some constant K. Then, \(J(u_n)\) is bounded, and thus \(u_n\) is bounded in BV(\(\varOmega \)). By the compactness of BV\((\varOmega )\), there exists a subsequence \(\{u_{n_k}\}\) of \(\{u_n\}\) such that \(u_{n_k} \rightarrow u\) in BV(\(\varOmega \))-weak\(^{*}\) and \(u_{n_k} \rightarrow u\) in \(L^1(\varOmega )\)-strong. Then, we can obtain that \(\tilde{\gamma } \leqslant u \leqslant \tilde{\xi }\). Finally, owing to the lower semi-continuity of \(J(\cdot )\) and Fatou’s lemma, u is a solution of (45). \(\square \)

The Proof of Lemma 2

Proof

Let \(h(u):=\nabla F(u) =\lambda \left( 1-\frac{f}{e^u}+\alpha \left( \frac{e^u}{f}-\beta \sqrt{\frac{e^u}{f}} \right) \right) \). By the mean value theorem, we have that for all \(u,v \in \mathcal {U}\),

$$\begin{aligned} \Vert \nabla F(u) - \nabla F(v)\Vert _2 = \Vert h(u)-h(v) \Vert _2 = |h'(\tilde{u})| \Vert u-v \Vert _2 \leqslant \Vert \lambda \Vert _{\infty } L_q \Vert u-v \Vert _2, \end{aligned}$$
(56)

where \(\tilde{u} = t u+(1-t)v\) for some \(t \in [0,1]\), and \(L_q = \sup _{\tilde{w} \in \mathcal {U}} |q'(\tilde{w})|\). By basic calculation, we can find an upper bound for \(L_q\) as follows:

$$\begin{aligned} L_q= & {} \sup \left| fe^{-u}+\alpha \left( \frac{e^u}{f}-\frac{\beta }{2}\sqrt{\frac{e^u}{f}} \right) \right| \leqslant \sup |fe^{-u}| +\alpha \sup \left| \frac{e^u}{f}-\frac{\beta }{2}\sqrt{\frac{e^u}{f}} \right| \nonumber \\\leqslant & {} \frac{f_{\max }}{t_{\alpha ,\beta }^2 f_{\min }} + \alpha \max \left( \frac{ \beta ^2}{16}, \frac{t_{\alpha ,\beta }^2 f_{\max }}{f_{\min }}- \frac{\beta }{2} \sqrt{\frac{t_{\alpha ,\beta }^2 f_{\max }}{f_{\min }}},\frac{t_{\alpha ,\beta }^2 f_{\min }}{f_{\max }}- \frac{\beta }{2} \sqrt{\frac{t_{\alpha ,\beta }^2 f_{\min }}{f_{\max }}} \right) .\nonumber \\ \end{aligned}$$
(57)

Define \(\tilde{L} := \frac{f_{\max }}{t_{\alpha ,\beta }^2 f_{\min }} + \alpha \max \left( \frac{\beta ^2}{16}, \frac{t_{\alpha ,\beta }^2 f_{\max }}{f_{\min }}- \frac{\beta }{2} \sqrt{\frac{t_{\alpha ,\beta }^2 f_{\max }}{f_{\min }}},\frac{t_{\alpha ,\beta }^2 f_{\min }}{f_{\max }}- \frac{\beta }{2} \sqrt{\frac{t_{\alpha ,\beta }^2 f_{\min }}{f_{\max }}} \right) \). Then, we have

$$\begin{aligned} \Vert \nabla _u F(u) - \nabla _u F(v)\Vert _2 \leqslant \Vert \lambda \Vert _{\infty } \tilde{L} \Vert u-v \Vert _2, \end{aligned}$$
(58)

which proves the Lipschitz continuity of \(\nabla F\).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, H., Kang, M., Jung, M. et al. An Exp Model with Spatially Adaptive Regularization Parameters for Multiplicative Noise Removal. J Sci Comput 75, 478–509 (2018). https://doi.org/10.1007/s10915-017-0550-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0550-4

Navigation