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Abstract In this paper, using Fourier analysis technique, we study the super convergence
property of the DDGIC (Liu and Yan in Commun Comput Phys 8(3):541–564, 2010) and
the symmetric DDG (Vidden and Yan in J Comput Math 31(6):638–662, 2013) methods
for diffusion equation. With kth degree piecewise polynomials applied, the convergence to
the solution’s spatial derivative is kth order measured under regular norms. On the other
hand when measuring the error in the weak sense or in its moment format, the error is super
convergent with (k + 2)th and (k + 3)th orders for its first two moments with even order
degree polynomial approximations. We carry out Fourier type (Von Neumann) error analysis
and obtain the desired super convergent orders for the case of P2 quadratic polynomial
approximations. The theoretical predicted errors agree well with the numerical results.

Keywords Discontinuous Galerkin method · Diffusion equation · Stability · Consistency ·
Convergence · Super convergence

1 Introduction

In this article we apply Fourier analysis technique to investigate solution gradient’s super
convergence property for diffusion equations. We focus on the simple Heat equation under
one-dimensional setting,
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ut − uxx = 0, for x ∈ [0, 2π], (1.1)

with zero Neumann boundary condition and initial condition u(x, 0) = cos(x). Under-
standing the analysis for the Heat equation is important for other applications such as the
Keller–Segal equations of chemotaxis.

Recently in [11]we carry out the study on chemotaxisKeller–Segel equationswithDDGIC
[14] and symmetric DDG [20] methods and obtain some interesting results. Let’s write out
the one-dimensional Keller–Segel equations,

{
ρt + (χcxρ)x = ρxx

ct = cxx − c + ρ
, x ∈ (a, b) and t > 0, (1.2)

to illustrate the major difficulties and issues solving (1.2) which in return motivate the super
convergence study in this article. We have two solution variables with ρ(x, t) denoting
the cell density and c(x, t) denoting the chemoattractant concentration. And χ = 1 is the
chemotactic sensitivity constant. We have zero Neumann boundary conditions associated
with problem (1.2). We see the equation for ρ(x, t) involves the spatial derivative of the
concentration variable cx (x, t), thus direct spatial discretization of (1.2) leads to one order
loss for the approximation of the cell density ρ(·, t). It is natural to introduce one extra
variable to approximate cx (·, t) separately and plug it into the equation for ρ(x, t) to obtain
uniform optimal convergence of (1.2), see [7,8,12].

In [11] we apply the DDGICmethod [14] and the symmetric DDGmethod [20] to directly
discretize the system (1.2) with no extra variable introduced and numerically we obtain
optimal convergence for both ρ(·, t) and c(·, t). Notice that the classical SIPG method [1]
directly applied to (1.2) leads to the expected one order loss, see [7]. It turns out that our
diffusion solver the DDGIC method or the symmetric DDG method have the hidden super
convergence property on it’s approximation to the solution’s spatial derivative cx (·, t). Even
the super convergence is in theweak sense or in its moment format, it is sufficient to guarantee
the optimal convergence of ρ(x, t) in (1.2).

In this paper we consider to performFourier type error analysis to study solution gradient’s
super convergence property of the DDGIC and symmetric DDG methods. Fourier analysis
is a technique to study stability and error estimates for discontinuous Galerkin method and
other related schemes, especially in some cases where standard finite element technique can
not be applied. The Fourier analysis does have several advantages over the standard finite
element techniques. It can be used to analyze some of the bad schemes [22]; it can be used
for stability analysis for some of the non-standard methods such as the special volume (SV)
method [23], which belongs to the class of Petrov–Galerkin methods and cannot be easily
amended to the standard finite element analysis framework; it can provide quantitative error
comparisons among different schemes [18,19]; and it can be used to prove superconvergence
and time evolution of errors for the DG method [5,6,9,25].

In [24] we apply Fourier analysis technique to study the original DDG method [13] and
prove that optimal order convergence can be obtained with the proper choice of (β0, β1)

coefficients chosen in the numerical flux. In [24] the Fourier type analysis also shows that
non-symmetric DDG method [21] converges with optimal order, which improves the order
loss of Baummann–Oden method [2] and NIPG method [15].

In this article we carry out Fourier type error estimate on approximating the solution’s
spatial derivative, namely ux (·, t) of (1.1) with the SIPGmethod [1], the DDGICmethod [14]
and the symmetric DDG method [20]. Due to limited symbolic computing power, we focus
on the case of P2 quadratic polynomial approximations which is good enough to illustrate
the super convergence properties of the DDG methods. Here we use uh(·, t) to denote the
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DG polynomial numerical solution. We carry out Fourier type error analysis on each method
and analytically calculate the following moment error:

MEm [ux − (uh)x ] = max
1≤ j≤N

∣∣∣∣∣
∫
I j

(ux − (uh)x ) v(x) dx

‖v‖L1

∣∣∣∣∣ , (1.3)

between ux (·, t) and (uh)x (·, t). Here I j is the j th indexed computational cell and v(x) is
a m degree polynomial on cell I j . With P2 approximations, we expect the errors of (1.3)
are on the level of 2nd (kth) order. For m = 0 of the moment error (1.3), corresponding to
the average error, we obtain the expected 2nd order convergence with the SIPG method [1].
On the other hand, we obtain (k + 2) = 4th order super convergence with the DDGIC
[14] and the symmetric DDG method [20] methods. For m = 1 case of (1.3), we obtain
(k + 3) = 5th order super convergence with the DDGIC and the symmetric DDG methods.
All super convergence errors and orders are theoretically verified through Fourier analysis
technique and the predicted errors match well with the numerical results.We should highlight
that our diffusion solver the DDGIC method [14] is closely related to the SIPG method [1].
The DDGIC method is different to the SIPG method only when high order polynomials (Pk

with k ≥ 2) are considered.
Notice that the errors of ‖ux − (uh)x‖ measured under strong sense, for example under

the standard ‖ · ‖L2 , ‖ · ‖L1 and ‖ · ‖L∞ norms, are all of 2nd order with P2 polynomial
approximations. The super convergence to the solution’s spatial derivative, even in the weak
sense as listed in (1.3), is sufficient to guarantee the optimal convergence of the cell density
variableρ(·, t) in theKeller–Segel system (1.2). For the average error corresponding tom = 0
in (1.3), numerically we obtain (k + 2)th order super convergence with all k = even degree
polynomial approximations. The super convergence result is observedwith β1 = 1/2k(k+1)
chosen in the numerical flux. With k = odd degree polynomials approximations, we obtain
(k + 1)th order super convergence for the average error and the super convergence is not
sensitive to the choice ofβ1 coefficient. In aword, any admissible coefficients in the numerical
flux lead to the super convergence phenomena.

This rest of the paper is organized as follows. In Sect. 2 we describe the three DGmethods
for the model Heat equation (1.1). In Sect. 3 we write out the Fourier analysis technique and
lay out the details of the ODE system for each method. Then we symbolically calculate the
moment errors and show the analytical predictionsmatchwellwith the numerical simulations.
Finally some concluding remarks are given in Sect. 4.

2 Three Discontinuous Galerkin Methods

Let’s first introduce the notations. We have I j = [x j− 1
2
, x j+ 1

2
], j = 1, . . . , N denoting a

partition of the domain [0, 2π ], with x 1
2

= 0 and xN+ 1
2

= 2π . We denote the center of

each cell by x j = 1
2

(
x j− 1

2
+ x j+ 1

2

)
and the size of each cell by h j = x j+ 1

2
− x j− 1

2
. The

computational cells are not supposed to be uniform for the numerical methods. For simplicity
of analysis we only consider uniformmeshes in this paper and we use h to denote the uniform
mesh size. We have Pk(I j ) representing the polynomial space on cell I j with degree at most
k. The DG solution space is defined as:

V
k
h :=

{
v ∈ L2(0, 2π): v|I j ∈ Pk(I j ), j = 1, . . . , N

}
.
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For v ∈ V
k
h , we adopt following notations to denote the jump and average of v across the

cell interface x j+1/2:

v± = v(x ± 0, t), �v� = v+ − v−, {{v}} = v+ + v−

2
.

Now we are ready to formulate the three DG schemes, namely the SIPG method [1], the
DDGICmethod [14] and the symmetric DDGmethod [20] to solve (1.1). In [13]we introduce
a numerical flux concept (̂uh)x to approximate ux (·, t) at the cell interface x j+1/2 and obtain
a new diffusion solver called direct discontinuous Galerkin (DDG) method. It is hard to
identify suitable coefficients in the numerical flux formula with higher order approximations
(k ≥ 4), thus we modify the DDG method with extra interface terms included and obtain the
DDGIC method in [14]. To obtain L2(L2) error estimate, we further introduce same format
numerical flux for the test function ṽx and obtain the symmetric DDG method in [20]. The
symmetric DDG method is the one that have symmetric structure for the bilinear form.

It turns out that the DDGIC method is closely related to the classical SIPG method [1].
The major difference of the two is that we have the numerical flux (̂uh)x introduced and
formulated as:

(̂uh)x = β0
�uh�

h
+ {{(uh)x }} + β1�x�(uh)xx �. (2.1)

In [14] we show any admissible coefficient pair (β0, β1) leads to the optimal convergence of
the DDGIC method. With the second derivative jump term �(uh)xx � dropped out from (2.1),
the DDGIC method degenerates to the SIPG method. On the other hand, with the second
derivative jump term included in the numerical flux, we do obtain quite a few advantages
of DDGIC method over the SIPG method. Numerically we observe that only a small fixed
penalty coefficient (β0 = 2) is needed to stabilize the DDGIC scheme for Pk (k ≤ 9)
polynomial approximations. It is well known that the penalty coefficient [β0 in (2.1)] of the
SIPG method needs to be large enough, roughly β0 ≈ k2/2, to stabilize the scheme. Under
the topic of maximum principle, third order DDGIC numerical solution can be proved to
satisfy strict maximum principle even on unstructured triangular meshes [4], while for SIPG
method only second order piecewise linear polynomial solution can be proved to satisfy
maximum principle.

Including the second derivative jump term �(uh)xx � in (2.1) does give DDGIC or sym-
metric DDG methods extra flexibility. In this paper we show that with the proper choice of
β1 coefficient in the numerical flux (2.1), extra super convergence property can be obtained
with DDGIC and symmetric DDG methods. Now we adopt the notation of the numerical
flux (̂uh)x of (2.1) to uniformly write out the SIPG, DDGIC and symmetric DDG methods
solving (1.1).

2.1 SIPG Method [1]

We multiply the Heat equation (1.1) with an arbitrary test function v ∈ V�x , integrate over
the cell I j , have the integration by parts and add test function interface terms to symmetrize
the diffusion term, formally we have the SIPG method written out as:

⎧⎪⎪⎨
⎪⎪⎩

∫
I j

(uh)tvdx − (̂uh)xv−∣∣
j+ 1

2
+ (̂uh)xv+∣∣

j− 1
2

+ ∫
I j

(uh)xvxdx

+ 1
2 �uh�(vx )

−
j+ 1

2
+ 1

2 �uh�(vx )
+
j− 1

2
= 0,

(̂uh)x = β0
�uh�
h + {{(uh)x }}, at x j±1/2.

(2.2)
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Summing (2.2) over all I j , we have the primary formulation of the SIPG method as,

∫ 2π

0
(uh)tvdx + B(uh, v) = 0,

with the bilinear form laid out as:

B(uh, v) =
N∑
j=1

∫
I j

(uh)xvx dx +
N∑
j=1

(
{{(uh)x }}�v� + {{vx }}�uh� + β0

�uh��v�

h

)
j+1/2

.

Suppose periodic boundary condition is considered here. Obviously the bilinear form is
symmetric with B(uh, v) = B(v, uh).

2.2 DDGIC Method [14]

To solve the model Heat equation (1.1) with the DDGIC method [14], we multiply the
equation with test function v ∈ V�x and integrate over the computational cell I j . We perform
the integration by parts, add interface terms involving test function derivative {{vx }} and we
obtain the DDGIC scheme formulation as below,⎧⎪⎪⎨

⎪⎪⎩

∫
I j

(uh)tvdx − (̂uh)xv−∣∣
j+ 1

2
+ (̂uh)xv+∣∣

j− 1
2

+ ∫
I j

(uh)xvxdx

+ 1
2 �uh�(vx )

−
j+ 1

2
+ 1

2 �uh�(vx )
+
j− 1

2
= 0,

(̂uh)x = β0
�uh�
h + {{(uh)x }} + β1h�(uh)xx �, at x j±1/2.

(2.3)

We see the only difference between the DDGIC method (2.3) and the SIPG method (2.2) is
that we include the solution’s second derivative jump term �(uh)xx � in the numerical flux
(̂uh)x . In a word, the DDGIC method is only different to the SIPG method when high order
Pk (k ≥ 2) polynomials are applied. The DDGIC method degenerates to the SIPG method
when piecewise constant and linear polynomials are considered.

2.3 Symmetric DDG Method [20]

Now we introduce test function numerical flux ṽx and refine the interface correction terms
to obtain a symmetric DDG method as,

∫
I j

(uh)tvdx − (̂uh)xv
−∣∣

j+ 1
2

+ (̂uh)xv
+∣∣

j− 1
2

+
∫
I j

(uh)xvxdx

+ ṽx �uh� j+ 1
2

+ ṽx �uh� j− 1
2

= 0, (2.4)

with numerical flux,{
(̂uh)x = β0u

�uh�
h + {{(uh)x }} + β1h�(uh)xx �

ṽx = β0v
�v�
h + {{vx }} + β1h�vxx �

, at x j±1/2. (2.5)

Notice that the test function v is taken to be non-zero only inside the cell I j . When
evaluating ṽx at cell interfaces x j±1/2, only the quantities from the side of I j contribute to
the calculation of ṽx . For example at x j+ 1

2
we have,

ṽx | j+ 1
2

= β0v
−v−

h
+ v−

x

2
+ β1h(−v−

xx ).
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Summing (2.4) over all computational cells I j , we have the primal formulation of sym-
metric DDG method solving (1.1) as,

∫ 2π

0
(uh)tvdx + B(uh, v) = 0,

where the bilinear form is defined as,

B(uh, v) =
N∑
j=1

∫
I j

(uh)xvx dx +
N∑
j=1

(
(̂uh)x �v� + ṽx �uh�

)
j+ 1

2

.

We see the bilinear form B(uh, v) = B(v, uh) is symmetric for the symmetric DDGmethod.
For time dependent parabolic problems, we find out the DDGIC method [14] is the most

efficient diffusion solver. For time independent elliptic type problems, the symmetric DDG
method [10] is more efficient. Among the four DDG methods [13,14,20,21] the symmetric
DDGmethod is the only one that gives the mass matrix being symmetric. The non-symmetric
mass matrix of the DDGIC method may cause extra issues when fast solvers are applied.
In [10] we observe symmetric DDG method also gives the smallest condition number on
the mass matrix. When comparing to the SIPG method, the symmetric DDG method saves
7–10% CPU running time, especially for high order polynomial approximations. In [10] we
also observe that the symmetric DDGmethod resolves the oscillatory wave much better than
the DDGIC method.

Up to now, we have taken the method of lines approach and have left time variable t
continuous. For time discretization, TVD Runge–Kutta method [16,17] is used to solve the
ODE to match the accuracy in space,

(uh)t = L(uh). (2.6)

Specifically the third-order TVD Runge–Kutta method that we use in this paper is given by,

u(1)
h = unh + �t L(unh),

u(2)
h = 3

4
unh + 1

4

(
u(1)
h + �t L(u(1)

h )
)

,

un+1
h = 1

3
unh + 2

3

(
u(2)
h + �t L(u(2)

h )
)

.

3 Fourier Analysis for the Moment Errors

In this section we write out the SIPG method, the DDGIC method and the symmetric DDG
method in details and lay out the three DG methods as finite difference schemes. We need
the assumption of uniform mesh and still zero Neumann boundary condition is considered.
Treated as finite difference methods, we then perform the standard Von Neumann Fourier
analysis and symbolically calculate the moment errors for each method and finally compare
the analytical errors with the numerical ones.

We use the SIPG method (2.2) to demonstrate the procedure of the Fourier analysis. After
picking a local basis for the solution space V

h
h and inverting a local (k + 1) × (k + 1) mass

matrix (which could be done by hand), the DG method of (2.2) can be rewritten out as:

d

dt
�u j = 1

h2
(
A�u j−1 + B �u j + C �u j+1

)
, (3.1)
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where �u j is a small vector of size k+1 containing the coefficients of the DG solution uh(·, t)
in the local basis inside cell I j and A, B and C are (k + 1) × (k + 1) constant matrices. If
we choose the point values of the solution uh(·, t) inside cell I j as the degree of freedom,
denoted by

u j+ 2i−k
2(k+1)

, i = 0, . . . , k,

at the k + 1 equally spaced points, then the DG method, rewritten in terms of these degrees
of freedom, can be considered as a finite difference scheme on a globally uniform mesh
(with mesh size h/(k + 1)); however they are not standard finite difference schemes because
each point in the group of k + 1 points belonging to the cell I j obeys a different form of
finite difference scheme. Since we focus on P2 quadratic polynomial approximations, let us
discuss the procedure in detail with k = 2. The degree of freedom are now the point values
at the 3N uniformly spaced points,

u j− 1
3
, u j , u j+ 1

3
, j = 1, . . . , N .

The DG polynomial solution inside cell I j is then represented by,

uh(x, t) = u j− 1
3
(t)φ j− 1

3
(x) + u j (t)φ j (x) + u j+ 1

3
(t)φ j+ 1

3
(x), (3.2)

where φ j− 1
3
(x), φ j (x), φ j+ 1

3
(x) are the Lagrange interpolation polynomials at points

x j− 1
3
, x j and x j+ 1

3
. Now we obtain the finite difference representation of the SIPG method

(2.2) as in (3.1) with the numerical solution vector defined as,

�u j =
⎛
⎜⎝
u j− 1

3
(t)

u j (t)
u j+ 1

3
(t)

⎞
⎟⎠ , on cell I j . (3.3)

As a finite difference method, we perform the following Von Neumann Fourier analysis.
The analysis depends on the assumption of uniform mesh and periodic boundary condition.
We make an ansatz of the solution with the form,

u j (t) = û j (t)e
ix j , (3.4)

and substitute the ansatz of (3.4) into the SIPG scheme (3.1) to find the coefficient vector
evolving in time as,

d

dt

⎛
⎜⎝
û j− 1

3
(t)

û j (t)
û j+ 1

3
(t)

⎞
⎟⎠ = G(h)

⎛
⎜⎝
û j− 1

3
(t)

û j (t)
û j+ 1

3
(t)

⎞
⎟⎠ . (3.5)

The amplification matrix G(h) is given by,

G(h) = 1

h2

(
A e−ih + B + C eih

)
. (3.6)

The matrices A, B,C are from (3.1) which is the rewritten of the SIPG scheme (2.2) with
Lagrange interpolation polynomials as basis functions.

The general solution of the ODE system (3.5) is given by,⎛
⎜⎝
û j− 1

3
(t)

û j (t)
û j+ 1

3
(t)

⎞
⎟⎠ = a1 e

λ1t V1 + a2 e
λ2t V2 + a3 e

λ3t V3, (3.7)
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where λ1, λ2, λ3, and V1, V2, V3 are the eigenvalues and the corresponding eigenvectors of
the amplification matrix G(h) respectively.

To fit the initial condition u(x, 0) = cos(x), we set,

u j− 1
3
(0) = e

i x
j− 1

3 , u j (0) = ei x j , u j+ 1
3
(0) = e

i x
j+ 1

3 ,

whose real part is the given initial condition of the model Heat equation (1.1). Thus we
require, at t = 0,

⎛
⎜⎝
û j− 1

3
(0)

û j (0)
û j+ 1

3
(0)

⎞
⎟⎠ =

⎛
⎜⎝
e−i h

3

1

ei
h
3

⎞
⎟⎠ ei x j .

Fitting the initial condition determines the coefficients a1, a2, and a3 in the general solution
(3.7). Thuswe can explicitlywrite out the solution expression (3.2) for the SIPGmethod.With
the exact solution spatial derivative given as ux (·, t) = −e−t sin(x), we can symbolically
calculate the moment errors of (1.3). Through the simple Taylor expansions, now we are able
to find out the leading error terms in the moment errors expression. In the following sections
we compare the predicted errors by Fourier analysis to the errors numerically calculated from
the SIPG, DDGIC and symmetric DDG methods. We should mention this is not a standard
error estimate technique, yet the Fourier type error analysis is a very powerful tool and can
carry out error estimate for problems that can be not analyzed through standard finite element
technique.

In this paper we study the super convergence property of the DDGIC and the symmetric
methods under the moment errors (1.3). Specifically the test function on cell I j is taken as

v = (
x−x j
h/2 )m withm = 0, 1, . . . , 2k−1 as the polynomial power. The moment error of (1.3)

is laid out in detail as the following:

MEm [ux − (uh)x ] = max
1≤ j≤N

∣∣∣∣∣
∫
I j

((uh)x (·, t) − ux (·, t))v(x) dx

‖v‖L1

∣∣∣∣∣ ,

v =
(
x − x j
h/2

)m

. (3.8)

Here the exact solution is given with u(x, t) = e−t cos(x).
We first consider to apply Fourier analysis to symbolically calculate the solution derivative

moment errors (3.8) with different moment powers for the SIPG, DDGIC and symmetric
DDG methods. Then we numerically compute the moment errors (3.8) with the three DG
methods and carry out comparisons to the estimated errors through Fourier analysis. Notice
that numerical solutions are obtained with third order TVD Runge–Kutta method (2.6) for
time discretization.We choose smaller time step size tomake sure spatial errors are dominant.
For the average error corresponding to m = 0 in (3.8), an expected 2rd order convergence is
obtained for the SIPG method with P2 quadratic polynomial approximations. On the other
hand we obtain 4th order super convergence for the average error with the DDGIC method
and the symmetric DDG method. For the moment error of (3.8) with m = 1, we obtain
5th order super convergence with the DDGIC and the symmetric DDG methods. All super
convergence orders are verified through analytical error estimate and numerical simulations.
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3.1 SIDG Method of (2.2)

In this section we perform Fourier analysis on the SIPGmethod (2.2) with the numerical flux
taken in the form of,

(̂uh)x = β0
�uh�

h
+ {{(uh)x }}.

The matrices A, B,C in (3.1) for the SIPG method are:

A = 1

48

⎛
⎝ 3(−119 + 23β0) 2(549 − 115β0) 3(−319 + 115β0)

−27(−9 + β0) 18(−43 + 5β0) −27(−33 + 5β0)

3(1 − β0) 2(−3 + 5β0) 3(−7 − 5β0)

⎞
⎠ ,

B = 1

24

⎛
⎝−9(−17 + 19β0) 2(−93 + 55β0) −9(−17 + 3β0)

27(−1 + 3β0) −18(17 + 5β0) 27(−1 + 3β0)

−9(−17 + 3β0) 2(−93 + 55β0) −9(−17 + 19β0)

⎞
⎠ , (3.9)

C = 1

48

⎛
⎝ 3(−7 − 5β0) 2(−3 + 5β0) 3(1 − β0)

−27(−33 + 5β0) 18(−43 + 5β0) −27(−9 + β0)

3(−319 + 115β0) 2(549 − 115β0) 3(−119 + 23β0)

⎞
⎠ .

We take β0 = 4 for the SIPG method and the same coefficient value β0 = 4 is applied in
the following Sect. 3.2 for the the DDGIC method and Sect. 3.3 for the symmetric DDG
method. In Table 1 we list the analytically calculated moment errors (3.8) with the SIPG
method through Fourier technique. For the average error [(3.8) with m = 0] we see the
leading order is of 2nd order which is an expected order for the SIPG method with quadratic
polynomial approximations. No super convergence phenomena is observed in this case. In

Table 1 Analytically calculated
moment errors (3.8) with the
SIPG method (3.1) and (3.9)

β0 = 4

m = 0
( − 1

36 e
−t sin(x j )

)
h2 + O(h4)

m = 1
( 1
72 e

−t sin(x j )
)
h3 + O(h5)

m = 2
( − 11

540 e
−t sin(x j )

)
h2 + O(h4)

m = 3
( 37
4200 e

−t sin(x j )
)
h3 + O(h5)

Table 2 SIPG method moment
errors (3.8) comparison:
numerical solution moment
errors from scheme (2.2) and
estimated errors from Table 1

Numerical solutions Predicted by analysis

Error Order Error Order

m = 0

N = 10 0.65153E−02 – 0.66514E−02 –

N = 20 0.16343E−02 1.99 0.16424E−02 2.00

N = 40 0.41392E−03 1.98 0.41443E−03 2.00

N = 80 0.10382E−03 1.99 0.10385E−03 2.00

m = 1

N = 10 0.40371E−02 – 0.41792E−02 –

N = 20 0.51798E−03 2.96 0.51596E−03 3.00

N = 40 0.65162E−04 2.99 0.65098E−04 3.00

N = 80 0.81581E−05 2.99 0.81561E−05 3.00
Final time t=0.5
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Table 2 we list the moment errors numerically computed with the SIPG method (2.2) and the
ones calculated from Fourier analysis, namely the leading error terms in Table 1. The two
groups of errors match very well.

3.2 DDGIC Method of (2.3)

In this section we perform Fourier type error analysis on the DDGIC method (2.3) with
quadratic P2 polynomial approximations. The matrix vector format of the DDGIC method
is given as (3.1) with the matrices A, B,C laid out as the following:

A = 1

48

⎛
⎝ 3(−119 + 23β0 + 552β1) 2(549 − 115β0 − 1656β1) 3(−319 + 115β0 + 552β1)

−27(−9 + β0 + 24β1) 18(−43 + 5β0 + 72β1) −27(−33 + 5β0 + 24β1)

3(1 − β0 − 24β1) 2(−3 + 5β0 + 72β1) 3(−7 − 5β0 − 24β1)

⎞
⎠ ,

B = 1

24

⎛
⎝ −9(−17 + 19β0 + 88β1) 2(−93 + 55β0 + 792β1) −9(−17 + 3β0 + 88β1)

27(−1 + 3β0 + 24β1) −18(17 + 5β0 + 72β1) 27(−1 + 3β0 + 24β1)

−9(−17 + 3β0 + 88β1) 2(−93 + 55β0 + 792β1) −9(−17 + 19β0 + 88β1)

⎞
⎠ ,

C = 1

48

⎛
⎝ 3(−7 − 5β0 − 24β1) 2(−3 + 5β0 + 72β1) 3(1 − β0 − 24β1)

−27(−33 + 5β0 + 24β1) 18(−43 + 5β0 + 72β1) −27(−9 + β0 + 24β1)

3(−319 + 115β0 + 552β1) 2(549 − 115β0 − 1656β1) 3(−119 + 23β0 + 552β1)

⎞
⎠ .

(3.10)

We study the super convergence property of the DDGIC method with different choices of
(β0, β1) coefficient in the numerical flux (̂uh)x (2.3). The proper choice ofβ1 coefficient leads
to the super convergence on its approximation to the solution’s derivative measured under
the moment errors format of (3.8). Specifically we study two cases with (β0, β1) = (4, 1

8 )

and (β0, β1) = (4, 1
12 ). We symbolically calculate the moment errors (3.8) through Fourier

analysis tool and we list the leading errors in Table 3.
With β1 = 1

2k(k+1) = 1
12 chosen in the numerical flux (̂uh)x of the DDGIC method (2.3),

we see the average error (m = 0 case) is super convergent with (k + 2) = 4th order (the
leading error term in Table 3). Themoment error of (3.8) withm = 1 is super convergent with
(k + 3) = 5th order. Through finite element technique, authors in [3] prove that on Gaussian
points (k + 1)th order super convergence can be obtained with β1 = 1

2k(k+1) . Same β1

coefficient formula works in our study on the moment errors. Different to [3], we do not need
special initialization to guarantee super convergence results. Numerical experiments show
Taylor expansion initialization, L2 initialization and Lagrange interpolation initialization all
lead to the observed super convergence orders. We should also mention that for higher order
moment errors, for example m = 2 of (3.8), no super convergence is observed.

We apply DDGIC scheme (2.3) to numerically solve the Heat equation and calculate the
moment errors (3.8). In Table 4 we compare the numerical solution moment errors and the
errors predicted by Fourier analysis. The numerical errors match very well with the analytical
ones.

3.3 Symmetric DDG Method

In this sectionwe perform Fourier analysis on the symmetric DDGmethod (2.4) with numeri-
cal flux (2.5). Here we have the notation of β0 = β0u+β0v . Considering the rewritten of (2.4)
in terms of matrix vector format (3.1), we have the matrices of A, B,C for the symmetric
DDG method listed below as:
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Table 3 Analytically calculated moment errors (3.8) with the DDGIC method (3.1) and (3.10)

β1 = 1
8 β1 = 1

12

m = 0
( 1
72 e

−t sin(x j )
)
h2 + O(h4)

( 24t−7
17280 e

−t sin(x j )
)
h4 + O(h6)

m = 1 −( 1
144 e

−t sin(x j )
)
h3 + O(h5) −( 667+840t

3628800 e−t sin(x j )
)
h5 + O(h7)

m = 2
( 7
1080 e

−t sin(x j )
)
h2 + O(h4) −( 1

90 e
−t sin(x j )

)
h2 + O(h4)

m = 3 −( 31
8400 e

−t sin(x j )
)
h3 + O(h5)

( 1
2100 e

−t sin(x j )
)
h3 + O(h5)

Table 4 DDGIC method moment errors (3.8) with β1 = 1/8 or β1 = 1/12 in (̂uh)x

β1 = 1
8 β1 = 1

12

Numerical solutions Predicted by analysis Numerical solutions Predicted by analysis

Error Order Error Order Error Order Error Order

m = 0

N = 10 3.13e−03 – 3.32e−03 – 2.65e−05 – 2.73e−05 –

N = 20 8.09e−04 1.95 8.21e−04 2.00 1.67e−06 3.98 1.68e−06 4.00

N = 40 2.06e−04 1.97 2.07e−04 2.00 1.06e−07 3.98 1.06e−07 4.00

N = 80 5.18e−05 1.99 5.19e−05 2.00 6.67e−09 3.99 6.67e−09 4.00

m = 1

N = 10 1.97e−03 – 2.08e−03 – 3.39e−05 – 3.55e−05 –

N = 20 2.57e−04 2.93 2.57e−04 3.00 1.09e−06 4.94 1.09e−06 5.00

N = 40 3.25e−05 2.98 3.25e−05 3.00 3.46e−08 4.98 3.46e−08 5.00

N = 80 4.07e−06 2.99 4.07e−06 3.00 1.08e−09 4.99 1.08e−09 5.00

Numerical errors from scheme (2.3) and analytical errors from Table 3. Final time t=0.5

A = 1

48

⎛
⎝ 3(−119 + 23β0 + 612β1) 2(549 − 115β0 − 1956β1) 3(−319 + 115β0 + 852β1)

−27(−9 + β0 + 44β1) 18(−43 + 5β0 + 172β1) −27(−33 + 5β0 + 124β1)

3(1 − β0 + 36β1) 2(−3 + 5β0 − 228β1) 3(−7 − 5β0 + 276β1)

⎞
⎠ ,

B = 1

24

⎛
⎝ −9(−17 + 19β0 + 148β1) 2(−93 + 55β0 + 1092β1) −9(−17 + 3β0 + 148β1)

27(−1 + 3β0 + 84β1) −18(17 + 5β0 + 172β1) 27(−1 + 3β0 + 84β1)

−9(−17 + 3β0 + 148β1) 2(−93 + 55β0 + 1092β1) −9(−17 + 19β0 + 148β1)

⎞
⎠

C = 1

48

⎛
⎝ 3(−7 − 5β0 + 276β1) 2(−3 + 5β0 − 228β1) 3(1 − β0 + 36β1)

−27(−33 + 5β0 + 124β1) 18(−43 + 5β0 + 172β1) −27(−9 + β0 + 44β1)

3(−319 + 115β0 + 852β1) 2(549 − 115β0 − 1956β1) 3(−119 + 23β0 + 612β1)

⎞
⎠ .

(3.11)

Similar to the super convergence study on the DDGIC method, we consider two cases with
(β0, β1) = (4, 1

8 ) and (β0, β1) = (4, 1
12 ) chosen in the numerical fluxes (2.5). Notice that

we have β0 = β0u + β0v for the symmetric DDG method.
Again we symbolically calculate the moment errors (3.8) and list the analytical results

in Table 5. With β1 = 1
12 case, we have 4th order super convergence on the average error

(m = 0 case) and 5th order super convergence on the moment error of (3.8) with m = 1. In
Table 6 we list the numerical solution moment errors and the moment errors calculated from
Fourier analysis. The two groups of errors match very well.
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Table 5 Analytically calculated moment errors (3.8) with the symmetric DDG method (3.1) and (3.11)

β1 = 1
8 β1 = 1

12

m = 0 − 1
72 e

−t sin(x j )h
2 + O(h4) 7−24t

17280 e
−t sin(x j )h

4 + O(h6)

m = 1 1
288 e

−t sin(x j )h
3 + O(h5) −173+840t

3628800 e−t sin(x j )h
5 + O(h7)

m = 2 7
1080 e

−t sin(x j )h
2 + O(h4) 1

90 e
−t sin(x j )h

2 + O(h4)

m = 3 9
5600 e

−t sin(x j )h
3 + O(h5) − 1

2100 e
−t sin(x j )h

3 + O(h5)

Table 6 Symmetric DDG method moment errors (3.8) with β1 = 1/8 and β1 = 1/12 in (̂uh)x and ṽx

β1 = 1
8 β1 = 1

12

Numerical solutions Predicted by analysis Numerical solutions Predicted by analysis

Error Order Error Order Error Order Error Order

m = 0

N = 10 3.14e−03 – 3.32e−03 – 2.78e−05 – 2.73e−05 –

N = 20 8.09e−04 1.96 8.21e−04 2.00 1.69e−06 4.04 1.68e−06 4.00

N = 40 2.06e−04 1.97 2.07e−04 2.00 1.06e−07 3.99 1.06e−07 4.00

N = 80 5.18e−05 1.99 5.19e−05 2.00 6.67e−09 3.99 6.67e−09 4.00

m = 1

N = 10 9.40e−04 – 1.04e−03 – 7.27e−06 – 8.08e−06 –

N = 20 1.27e−04 2.88 1.28e−04 3.00 2.46e−07 4.88 2.49e−07 5.00

N = 40 1.62e−05 2.97 1.62e−05 3.00 7.84e−09 4.97 7.87e−09 5.00

N = 80 2.03e−06 2.99 2.03e−06 3.00 2.46e−10 4.99 2.46e−10 5.00

Numerical solution errors from scheme (2.4) and estimated errors from Table 5. Final time t=0.5

3.4 Piecewise Linear Approximations

As we mentioned previously in Sect. 2 that our diffusion solver the DDGIC and symmetric
DDG methods degenerate to the SIPG method with low order (Pk with k ≤ 1) polynomial
approximations. With piecewise linear polynomial approximations it turns out that the SIPG
method is also super convergent with (k+1) = 2 a second order for the average error [m = 0
in moment errors (3.8)].

We carry out Fourier analysismoment error estimatewith piecewise linear approximations
with SIPG method and list the first two moments errors below:

{
MEm=0 [ux − (uh)x ] = 1

96e
−t sin(x j )(7 + 8t)h2 + O(h4),

MEm=1 [ux − (uh)x ] = 1
6e

−t cos(x j )h + O(h3).
(3.12)

We also compute the moment errors (3.8) numerically with SIPG method (2.2) and P1

approximations. We list the comparison between numerical errors and the estimated ones in
Table 7 for the average error (m = 0 case). We see the SIPG method on its approximation
to the solution’s spatial derivative is also super convergent with (k + 1) = 2nd order. Based
on the super convergence studies, the SIPG method seems not ‘complete’ and our diffusion
solver the DDGIC and symmetric DDG methods complements the SIPG method in some
way.
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Table 7 Piecewise linear
approximations moment errors
(3.8) comparison: numerical
errors with SIPG method (2.2)
and analytical errors from
estimate (3.12)

Numerical solutions Predicted by analysis

Error Order Error Order

m = 0

N = 10 2.42e−02 – 2.74e−02 –

N = 20 6.56e−03 1.89 6.77e−03 2.00

N = 40 1.69e−03 1.95 1.70e−03 2.00

N = 80 4.27e−04 1.98 4.28e−04 2.00
Final time t=0.5

4 Conclusion

We consider to solve the model Heat equation (1.1) with the classical SIPG method [1],
the DDGIC method [14] and the symmetric DDG method [20]. Specifically we study the
approximation to the solution’s spatial derivative, namely ux (·, t) of (1.1), measured under
the moment errors (3.8). With kth degree polynomial applied, the error measured under
L2 and L∞ strong norms is of kth order on its approximation to the solution’s derivative.
Measured under the weak sense or in the moment format, the error is super convergent with
(k+2)th and (k+3)th order for its first twomomentswith theDDGICand the symmetricDDG
methodswith even order approximations. No super convergence is observedwith the classical
SIPG method, even measured under weak sense. The observed super convergence orders
are theoretically verified with Fourier type error estimate when P2 quadratic polynomials
approximations is considered. The analytically predicted errorsmatchwellwith the numerical
results.
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