Skip to main content
Log in

Analysis of SDFEM on Shishkin Triangular Meshes and Hybrid Meshes for Problems with Characteristic Layers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we analyze the streamline diffusion finite element method (SDFEM) for a model singularly perturbed convection–diffusion equation on a Shishkin triangular mesh and hybrid meshes. Supercloseness property of \(u^I-u^N\) is obtained, where \(u^I\) is the interpolant of the solution u and \(u^N\) is the SDFEM’s solution. The analysis depends on novel integral inequalities for the diffusion and convection parts in the bilinear form. Furthermore, analysis on hybrid meshes shows that bilinear elements should be recommended for the exponential layer, not for the characteristic layer. Finally, numerical experiments support these theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14(1), 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  3. Franz, S., Kellogg, R.B., Stynes, M.: Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection–diffusion problem with corner singularities. Math. Comp. 81(278), 661–685 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Franz, S., Linß, T.: Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection–diffusion problem with characteristic layers. Numer. Methods Part D E 24(1), 144–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Franz, S., Linß, T., Roos, H.-G.: Superconvergence analysis of the SDFEM for elliptic problems with characteristic layers. Appl. Numer. Math. 58, 1818–1829 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guo, W., Stynes, M.: Pointwise error estimates for a streamline diffusion scheme on a Shishkin mesh for a convection–diffusion problem. IMA J. Numer. Anal. 17, 29–59 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R., (eds.) Finite Element Methods for Convection Dominated Flows, vol. AMD 34. American Society of Mechanical Engineers. Applied Mechanics Division, New York (1979)

  8. Kellogg, R.B., Stynes, M.: Corner singularities and boundary layers in a simple convection–diffusion problem. J. Differ. Equ. 213, 81–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kellogg, R.B., Stynes, M.: Sharpened bounds for corner singularities and boundary layers in a simple convection–diffusion problem. Appl. Math. Lett. 20, 539–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, Q., Yan, N.N., Zhou, A.H.: A rectangle test for interpolated finite elements. In: Proc. Sys. Sci. and Sys. Eng. (Hong Kong) pp. 217–229. Great Wall Culture Publ. Co (1991)

  11. Roos, H.-G.: Superconvergence on a hybrid mesh for singularly perturbed problems with exponential layers. ZAMM Z. Angew. Math. Mech. 86(8), 649–655 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shishkin, G.I.: Grid approximation of singularly perturbed elliptic and parabolic equations. Second doctorial thesis, Keldysh Institute, Moscow (1990) (In Russian)

  15. Stynes, M.: Steady-state convection–diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stynes, M., O’Riordan, E.: A uniformly convergent Galerkin method on a Shishkin mesh for a convection–diffusion problem. J. Math. Anal. Appl. 214, 36–54 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stynes, M., Tobiska, L.: The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41(5), 1620–1642 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stynes, M., Tobiska, L.: Using rectangular \(Q_p\) elements in the SDFEM for a convection–diffusion problem with a boundary layer. Appl. Numer. Math. 58(12), 1789–1802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, J., Liu, X.W.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers, submitted (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Additional information

This research was partly supported by NSF of China (Grant Nos. 11501335, 11401349 and 11501334) and NSF of Shandong Province (Grant Nos. BS2014SF008 and ZR2015FQ014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, X. Analysis of SDFEM on Shishkin Triangular Meshes and Hybrid Meshes for Problems with Characteristic Layers. J Sci Comput 68, 1299–1316 (2016). https://doi.org/10.1007/s10915-016-0180-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0180-2

Keywords

Navigation