Skip to main content

Advertisement

Log in

Petviashvilli’s Method for the Dirichlet Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We examine Petviashvilli’s method for solving the equation \( \phi - \Delta \phi = |\phi |^{p-1} \phi \) on a bounded domain \(\Omega \subset \mathbb {R}^d\) with Dirichlet boundary conditions. We prove a local convergence result, using spectral analysis, akin to the result for the problem on \(\mathbb {R}\) by Pelinovsky and Stepanyants in [16]. We also prove a global convergence result by generating a suite of nonlinear inequalities for the iteration sequence, and we show that the sequence has a natural energy that decreases along the sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We use the definition \({{\mathrm{cn}}}= {{\mathrm{cn}}}(x;m)\) rather than \({{\mathrm{cn}}}= {{\mathrm{cn}}}(x; k^2)\).

References

  1. Ablowitz, M.J., Musslimani, Z.H.: Spectral renormalization method for computing self-localized solutions to nonlinear systems. Opt. Lett. 30, 2140–2142 (2005)

    Article  Google Scholar 

  2. Adolfsson, V.: \(L^p\)-integrability of the second order derivatives of Green potentials in convex domains. Pac. J. Math. 159, 201–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Álvarez, J., Duran, A.: Petviashvili type methods for traveling wave computations: I. Analysis of convergence. J. Comput. Appl. Math. 266, 39–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners, Existence Results via the Variational Approach. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Baruch, G., Fibich, G.: Singular solutions of the \(L^{2}\)-supercritical biharmonic nonlinear Schrödinger equation. Nonlinearity 24, 1843–1859 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cazenave, T.: An introduction to semilinear elliptic equations, Federal University of Rio, Editora do IM-UFRJ, Rio de Janeiro, 2006. https://www.ljll.math.upmc.fr/cazenave/77.pdf

  7. Chugunova, M., Pelinovsky, D.E.: Two-pulse solutions in the fifth-order KdV equation. Discrete Cont. Dyn. B 8, 773–800 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demanet, L., Schlag, W.: Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation. Nonlinearity 19, 829–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fromm, S.: Potential space estimates for green potentials in convex domains. Proc. Am. Math. Soc. 119, 225–233 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2011)

    Google Scholar 

  11. Hutson, V., Pym, J.S., Cloud, M.J.: Applications of Functional Analysis and Operator Theory Analysis and Operator Theory, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  12. Lakoba, T.I., Yang, J.: A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity. J. Comput. Phys. 226, 1668–1692 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lakoba, T.I., Yang, J.: A mode elimination technique to improve convergence of iteration methods for finding solitary waves. J. Comput. Phys. 226, 1693–1709 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  15. Musslimani, Z.H., Yang, J.: Self-trapping of light in a two-dimensional photonic lattice. J. Opt. Soc. Am. B 21, 973–981 (2004)

    Article  Google Scholar 

  16. Pelinovsky, D.E., Stepanyants, Y.A.: Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal. 42, 1110–1127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Petviashvilli, V.I.: Equation of an extraordinary soliton, Plasma Physics, 2 (1976)

  18. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, vol. 1. Academic Press, Massachusetts (1980)

    MATH  Google Scholar 

  19. Shewchuk, J.R.: Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In: Lin, Ming C., Dinesh Manocha, (eds.) Applied Computational Geometry: Towards Geometric Engineering, pp. 203–222. Springer, Berlin (1996)

    Chapter  Google Scholar 

  20. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, Berlin (1999)

    MATH  Google Scholar 

  21. Yang, J., Lakoba, T.I.: Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations. Stud. Appl. Math. 118, 153–197 (2007)

    Article  MathSciNet  Google Scholar 

  22. Yang, J., Lakoba, T.I.: Accelerated imaginary-time evolution methods for the computation of solitary waves. Stud. Appl. Math. 120, 265–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful for several helpful conversations with Svitlana Mayboroda. D.Olson was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. S.Shukla was supported by University of Minnesota UROP-11133. G.Simpson began this work under the support of the DOE DE-SC0002085 and the NSF PIRE OISE-0967140, and completed it under NSF DMS-1409018. D.Spirn was supported by NSF DMS-0955687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Spirn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, D., Shukla, S., Simpson, G. et al. Petviashvilli’s Method for the Dirichlet Problem. J Sci Comput 66, 296–320 (2016). https://doi.org/10.1007/s10915-015-0023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0023-6

Keywords

Navigation