Skip to main content
Log in

Pseudospectral Modeling of Nano-Optics in Ag Sphere Arrays

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We report a Legendre pseudospectral modeling of silver sphere arrays illuminated by light waves. A special feature of the present computation is that the dispersive nature of silver is described by a Drude-Lorentz model with model parameters obtained by fitting the frequency-domain complex-valued dielectric constants measured experimentally. Numerical validations are conducted based on solving both the near and far fields of the Mie scattering problem, and we observe good convergence on the numerical fields. The far-field patterns of the Ag sphere arrays are simulated. The results are compared to those obtained by the dipole-coupling-model method, and we observe very good agreement between these results. The near-field patterns are also computed, and localized enhanced electric fields in the inter-particle gap regions due to plasmonic coupling between Ag particles are visualized. As the gap between Ag particles is reduced the strength of the localized enhanced electric field is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbenel, S., Gottlieb, D.: On the construction and analysis of absorbing layer in CEM. Appl. Numer. Math. 27, 331–340 (1998)

    Article  MathSciNet  Google Scholar 

  2. Biring, S., Wang, H.-H., Wang, J.-K., Wang, Y.-L.: Light scattering from 2D arrays of mono-dispersed Ag nanoparticles seperated by tunable nano-gap: spectral evolution and analytic analysis of plasmonic couplig. Opt. Express 16, 15312–15324 (2008)

    Article  Google Scholar 

  3. Carpenter, M.H., Kennedy, C.A.: Fourth order 2N-storage Runge-Kutta scheme NASA-TM-109112, NASA Langley Research Center, VA (1994)

  4. Ditkowski, A., Dridi, K., Hesthaven, J.S.: Convergent Cartesian grid methods for Maxwell’s equations in complex geometries. J. Comput. Phys. 170, 39–80 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Etchegoin, P.G., Ru, L.E.C.: Multipolar emission in the vicinity of metallic nanostructures. J. Phys.: Condens. Matter 18, 1175–1188 (2006)

    Article  Google Scholar 

  6. Funaro, D., Gottlieb, D.: A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations. Math. Comput. 51, 599–613 (1988)

    MATH  MathSciNet  Google Scholar 

  7. Funaro, D., Gottlieb, D.: Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment. Math. Comput. 57, 585–596 (1991)

    MATH  MathSciNet  Google Scholar 

  8. Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and applications to mesh generations. Int. J. Numer. Meth. Eng. 7, 461–477 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hesthaven, J.S.: Spectral penalty methods. Appl. Numer. Math. 33, 23–41 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hesthaven, J.S., Warburton, T.: High-order accurate methods for time-domain electromagnetics. Comput. Model. Eng. Sci. 5, 395–407 (2004)

    MATH  Google Scholar 

  13. Hesthaven, J.S., Dinesen, P.G., Lynov, J.P.: Spectral collocation time-domain modeling of diffractive optical elements. J. Comput. Phys. 155, 287–306 (1999)

    Article  MATH  Google Scholar 

  14. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  15. Ji, X., Cai, W., Zhang, P.: High-order DGTD methods for dispersive Maxwell’s equations and modeling of silver nanowire coupling. Int. J. Numer. Methods Eng. 69, 308–325 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ji, X., Lu, T., Cai, W., Zhang, P.: Discontinuous Galerkin time domain (DGTD) methods for the study of 2-D waveguide coupled microring resonators. J. Lightwave Technol. 23, 3864–3874 (2005)

    Article  Google Scholar 

  17. Kong, J.A.: Electromagnetic Wave Theory. EMW Publishing, Cambridge (1999)

    Google Scholar 

  18. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tullus 24, 199–215 (1972)

    Article  MathSciNet  Google Scholar 

  19. Lynch, D.W., Hunter, W.R.: Silver (Ag). In: Palik, E.D. (ed.) Handbook of Optical Constants of Solids, pp. 350–357. Academic, Orlando (1985)

    Google Scholar 

  20. Lin, B.Y., Hsu, H.C., Teng, C.H., Chang, H.C., Wang, J.K., Wang, Y.L.: Unraveling near-field origin of EM waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation. Opt. Express 17, 14211–14228 (2009)

    Article  Google Scholar 

  21. Liu, T.T., Lin, Y.H., Hung, C.S., Liu, T.J., Chen, Y., Huang, Y.C., Tsai, T.H., Wang, H.H., Wang, J.-K., Wang, Y.-L., Lin, C.H.: A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacterial cell wall. Plos One 4, e5470-1–e5470-10 (2009)

    Google Scholar 

  22. Persson, B.N.J., Liebsch, A.: Optical properties of two-dimensional systems of randomly distributed particles. Phys. Rev. B 28, 4247–4254 (1983)

    Article  Google Scholar 

  23. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. Artech House, Boston (2000)

    MATH  Google Scholar 

  24. Teng, C.H., Lin, B.Y., Chang, H.C., Hsu, H.C., Lin, C.N., Feng, K.A.: A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations. J. Sci. Comput. 36, 351–390 (2008)

    Article  MathSciNet  Google Scholar 

  25. Stannigel, K., Michael König, M., Niegemann, J., Busch, K.: Discontinuous Galerkin time-domain computations of metallic nanostructures. Opt. Express 17, 14934–14947 (2009)

    Article  Google Scholar 

  26. Wang, H.H., Liu, C.Y., Wu, S.B., Liu, N.Y., Peng, C.Y., Chan, T.H., Hsu, C.F., Wang, J.-K., Wang, Y.-L.: Highly Raman-ehhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 18, 491–495 (2006)

    Article  Google Scholar 

  27. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagat. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  28. Yang, B., Hesthaven, J.S.: A pseudospectral method for time-domain computation of EM scattering by bodies of revolution. IEEE Trans. Antennas Propagat. 47, 132–141 (1999)

    Article  Google Scholar 

  29. Yang, B., Hesthaven, J.S.: Multidomain pseudospectral computation of Maxwell’s equations in 3-D general curvilinear coordinates. Appl. Numer. Math. 33, 281–289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, B., Gottlieb, D., Hesthaven, J.S.: Spectral simulations of electromagnetic wave scattering. J. Comput. Phys. 134, 216–230 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hao Teng.

Additional information

A paper in memory of Prof. David Gottlieb.

This work is supported by National Science Council of Taiwan, grant No. NSC 96-2120-M-001-002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, BY., Teng, CH., Chang, HC. et al. Pseudospectral Modeling of Nano-Optics in Ag Sphere Arrays. J Sci Comput 45, 429–446 (2010). https://doi.org/10.1007/s10915-010-9376-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9376-z

Keywords

Navigation