Skip to main content
Log in

On Reconstruction from Non-uniform Spectral Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper addresses the reconstruction of compactly supported functions from non-uniform samples of their Fourier transform. We briefly investigate the consequences of acquiring non-uniform spectral data. We summarize two often applied reconstruction methods, convolutional gridding and uniform re-sampling, and investigate the reconstruction accuracy as it relates to sampling density. Finally, we provide preliminary results from employing spectral re-projection methods in the reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, C., Kim, J., Cho, Z.: High-speed spiral-scan echo planar NMR imaging. IEEE Trans. Med. Imag. 5(1), 2–7 (1986)

    Article  Google Scholar 

  2. Archibald, R., Chen, K., Gelb, A., Renaut, R.: Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method. NeuroImage 20(1), 489–502 (2003)

    Article  Google Scholar 

  3. Archibald, R., Gelb, A.: A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. IEEE Trans. Med. Imag. 21, 305–319 (2002)

    Article  Google Scholar 

  4. Atkinson, K.: An Introduction to Numerical Analysis. Wiley, New York (1978)

    MATH  Google Scholar 

  5. Bateman, H., Erdelyi, A.: Higher Transcendental Functions. McGraw-Hill, New York (1953)

    Google Scholar 

  6. Cocosco, C., Kollokian, V., Kwan, R., Evans, A.: Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage 5(4), 425 (1997)

    Google Scholar 

  7. Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imag. 17(3), 463–468 (1998)

    Article  Google Scholar 

  8. Dym, H., McKean, H.: Fourier Series and Integrals. Academic Press, New York (1972)

    MATH  Google Scholar 

  9. Fessler, J.A., Sutton, B.P.: Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 51(2), 560–574 (2003)

    Article  MathSciNet  Google Scholar 

  10. Fourmont, K.: Non-equispaced fast Fourier transforms with applications to tomography. J. Fourier Anal. Appl. 9(5), 431–450 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmonic Anal. 7, 101–135 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gelb, A., Tadmor, E.: Detection of edges in spectral data II: nonlinear enhancement. SIAM J. Numer. Anal. 38(4), 1389–1408 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia (1977)

    MATH  Google Scholar 

  14. Gottlieb, D., Shu, C.: On the Gibbs phenomenon and its resolution. Siam Rev. 39(4), 644–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hansen, P.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. Society for Industrial Mathematics, Philadelphia (1998)

    Google Scholar 

  16. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  17. Hoge, R.D., Kwan, R.K., Pike, G.B.: Density compensation functions for spiral MRI. Magn. Reson. Med. 38(1), 117–128 (1997)

    Article  Google Scholar 

  18. Jackson, J.I., Meyer, C.H., Nishimura, D.G., Macovski, A.: Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imag. 10(3), 473–478 (1991)

    Article  Google Scholar 

  19. Kwan, R., Evans, A., Pike, G.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imag. 18(11), 1085–1097 (1999)

    Article  Google Scholar 

  20. McConnell Brain Imaging Center: BrainWeb: Simulated Brain Database. http://www.bic.mni.mcgill.ca/brainweb/

  21. O’Sullivan, J.D.: Fast sinc function gridding algorithm for Fourier inversion in computer tomography. IEEE Trans. Med. Imag. 4(4), 111 (1985)

    Google Scholar 

  22. Pipe, J.G., Menon, P.: Sampling density compensation in MRI: rationale and an iterative numerical solution. Magn. Reson. Med. 41(1), 179–186 (1999)

    Article  Google Scholar 

  23. Remi, K., Evans, A., Pike, G.: An extensible MRI simulator for post-processing evaluation. In: Proceedings of the 4th International Conference on Visualization in Biomedical Computing, pp. 135–140. Springer, Berlin (1996)

    Google Scholar 

  24. Rosenfeld, D.: An optimal and efficient new gridding algorithm using singular value decomposition. Magn. Reson. Med. 40(1), 14–23 (1998)

    Article  Google Scholar 

  25. Rosenfeld, D.: New approach to gridding using regularization and estimation theory. Magn. Reson. Med. 48(1), 193–202 (2002)

    Article  Google Scholar 

  26. Sammis, I., Strain, J.: A geometric nonuniform fast Fourier transform. J. Comput. Phys. 228(18), 7086–7108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sedarat, H., Nishimura, D.G.: On the optimality of the gridding reconstruction algorithm. IEEE Trans. Med. Imag. 19(4), 306–317 (2000)

    Article  Google Scholar 

  28. Steidl, G.: A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9(3), 337–352 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tadmor, E.: Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. 16, 305–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tadmor, E., Tanner, J.: Adaptive mollifiers for high resolution recovery of piecewise smooth data from its spectral information. Found. Comput. Math. 2(2), 155–189 (2002)

    MATH  MathSciNet  Google Scholar 

  31. Tadmor, E., Tanner, J.: Adaptive filters for piecewise smooth spectral data. IMA J. Numer. Anal. 25(4), 635–647 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tadmor, E., Zou, J.: Three novel edge detection methods for incomplete and noisy spectral data. J. Fourier Anal. Appl. 14(5), 744–763 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adityavikram Viswanathan.

Additional information

In memory of David Gottlieb, beloved teacher, scholar, and friend. His pioneering work in spectral methods and in particular in resolving the Gibbs phenomenon has had a profound influence on this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathan, A., Gelb, A., Cochran, D. et al. On Reconstruction from Non-uniform Spectral Data. J Sci Comput 45, 487–513 (2010). https://doi.org/10.1007/s10915-010-9364-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9364-3

Keywords

Navigation