Skip to main content
Log in

Moving Mesh Discontinuous Galerkin Method for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a moving mesh discontinuous Galerkin (DG) method is developed to solve the nonlinear conservation laws. In the mesh adaptation part, two issues have received much attention. One is about the construction of the monitor function which is used to guide the mesh redistribution. In this study, a heuristic posteriori error estimator is used in constructing the monitor function. The second issue is concerned with the solution interpolation which is used to interpolates the numerical solution from the old mesh to the updated mesh. This is done by using a scheme that mimics the DG method for linear conservation laws. Appropriate limiters are used on seriously distorted meshes generated by the moving mesh approach to suppress the numerical oscillations. Numerical results are provided to show the efficiency of the proposed moving mesh DG method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azarenok B.N. (2002). Variational barrier method of adaptive grid generation in hyperbolic problems of gas dynamics. SIAM J. Numer. Anal. 40, 651–682

    Article  MATH  MathSciNet  Google Scholar 

  2. Beckett G., Mackenzie J.A., Robertson M.L., Sloan D.M. (2001). On the numerical solutions of one-dimensional PDEs using adaptive methods based on equidistribution. J. Comput. Phys. 167, 372–392

    Article  ADS  Google Scholar 

  3. Bey K.S., Oden J.T. (1996). hp-version discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Methods Appl. Mech. Engrg. 133, 259–286

    Article  MathSciNet  Google Scholar 

  4. Cao W.M., Huang W.-Z., Russell R.D. (1999). An r-adaptive finite element method based upon moving mesh PDEs. J. Comput. Phys. 149, 221–244

    Article  ADS  MathSciNet  Google Scholar 

  5. Cao W.M., Huang W.-Z., Russell R.D. (1999). A study of monitor functions for two dimensional adaptive mesh generation. SIAM J. Sci. Comput. 20, 1978–1994

    Article  MathSciNet  Google Scholar 

  6. Cao W.M., Huang W.-Z., Russell R.D. (2001). An error indicator monitor function for an r-adaptive finite-element method. J. Comput. Phys. 170, 871–892

    Article  ADS  MathSciNet  Google Scholar 

  7. Cockburn B. (1998). An introduction to the discontinuous Galerkin method for convection-dominated problems. In: Cockburn B., Johnson C., Shu C.-W., Tadmor E. (eds). Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Springer, Berlin New York

    Google Scholar 

  8. Cockburn B., Karniadakis G.E., Shu C.W. ed. (2000). Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, Berlin

    Google Scholar 

  9. Cockburn B., Li F., Shu C.W. (2004). Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 197, 588–610

    Article  ADS  MathSciNet  Google Scholar 

  10. Cockburn B., Shu C.W. (1998). The Runge–Kutta discontinuous Galerkin finite element method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224

    Article  MathSciNet  Google Scholar 

  11. Cockburn B., Shu C.W. (2001). Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261

    Article  MathSciNet  Google Scholar 

  12. Di Y., Li R., Tang T., Zhang P.W. (2005). Moving mesh finite element methods for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 26, 1036–1056

    MathSciNet  Google Scholar 

  13. Dvinsky A.S. (1991). Adaptive grid generation from harmonic maps on Riemannian manifolds. J. Comput. Phys. 95, 450–476

    Article  MATH  MathSciNet  Google Scholar 

  14. Li R., Liu W.-B., Ma H.-P., Tang T. (2002). Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41, 1321–1349

    Article  MathSciNet  Google Scholar 

  15. Li R., Tang T., Zhang P.-W. (2001). Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588

    Article  ADS  MathSciNet  Google Scholar 

  16. Li R., Tang T., Zhang P.-W. (2002). A moving mesh finite element algorithm for singular problems in two and three space dimensions. J. Comput. Phys. 177, 365–393

    Article  ADS  CAS  MathSciNet  Google Scholar 

  17. Lu T., Zhang P.-W., Cai W. (2004). Discontinuous Galerkin methods for dispersive and lossy Maxwell’s equations and PML boundary conditions. To appear in J. Comput. Phys.

  18. Tang H.Z., Tang T. (2003). Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515

    Article  MathSciNet  Google Scholar 

  19. Tang H.Z., Tang T., Zhang P.-W. (2003). An adaptive mesh redistribution method for nonlinear Hamilton-Jacobi equations in two- and three dimensions. J. Comput. Phys. 188, 543–572

    Article  ADS  MathSciNet  Google Scholar 

  20. Tang, T. (2005). Moving mesh methods for computational fluid dynamics. In Shi, Z.-C., Chen, Z., Tang, T. and Yu, D. (eds.), Recent Advances in Adaptive Computations (Providence, USA) Contemporary Mathematics, American Mathematical Society.

  21. Woodward P., Colella P. (1984). The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173

    Article  ADS  MathSciNet  Google Scholar 

  22. Zegeling P.A. (2005). On resistive MHD models with adaptive moving meshes.To appear in J. Sci. Comput. 24, 263–284

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Tang, T. Moving Mesh Discontinuous Galerkin Method for Hyperbolic Conservation Laws. J Sci Comput 27, 347–363 (2006). https://doi.org/10.1007/s10915-005-9045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9045-9

Keywords

Navigation