Skip to main content
Log in

Weighted tridiagonal matrix enhanced multivariance products representation (WTMEMPR) for decomposition of multiway arrays: applications on certain chemical system data sets

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This work focuses on the utilization of a very recently developed decomposition method, weighted tridiagonal matrix enhanced multivariance products representation (WTMEMPR) which can be equivalently used on continuous functions, and, multiway arrays after appropriate unfoldings. This recursive method has been constructed on the Bivariate EMPR and the remainder term of each step therein has been expanded into EMPR from step to step until no remainder term appears in one of the consecutive steps. The resulting expansion can also be expressed in a three factor product representation whose core factor is a tridiagonal matrix. The basic difference and novelty here is the non-constant weight utilization and the applications on certain chemical system data sets to show the efficiency of the WTMEMPR truncation approximants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hitchcock, J. Math. Phys. 7, 39 (1927)

    Article  Google Scholar 

  2. R.B. Cattel, Psychometrika 9, 267–283 (1944)

    Article  Google Scholar 

  3. R.B. Cattel, Psychol. Bull. 49, 499–452 (1952)

    Article  Google Scholar 

  4. L.R. Tucker, Problems in Measuring Change (1963), pp. 122–137

  5. L.R. Tucker, Contributions to Mathematical Psychology (1964), pp. 226–140

  6. P.G. Age Smilde, R. Bro, Multi-way Analysis: Applications in the Chemical Sciences (Wiley, London, 2004)

  7. A. Cichocki, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, London, 2009)

    Book  Google Scholar 

  8. T.G. Kolda, B. Bader, SIAM Rev. 51(3), 455–500 (2009)

    Article  Google Scholar 

  9. L.D. Lathauwer, B.D. Moor, J. Vandewalle, SIAM J. Matrix Anal. Appl. 21, 1253 (2000)

    Article  Google Scholar 

  10. M. Ayvaz, M. Demiralp, in Proceedings of the 2nd International Conference on Applied Informatics and Computing Theory, vol 2. (World Scientific and Engineering Academy and Society (WSEAS), 2011), p. 76

  11. I.M. Sobol, Math. Model. Comput. Exp. 1, 407 (1993)

    Google Scholar 

  12. T. Ziehn, A. Tomlin, Int. J. Chem. Kinet. 40, 742 (2008)

    Article  CAS  Google Scholar 

  13. T. Ziehn, A. Tomlin, Environ. Model. Softw. 24, 775 (2009)

    Article  Google Scholar 

  14. J. Sridharan, T. Chen, Proc. Des. Autom. Test Europe 1–3, 624 (2006)

    Google Scholar 

  15. B. Rao, R. Chowdhury, Int. J. Comput. Methods Eng. Sci. Mech. 9, 342 (2008)

    Article  Google Scholar 

  16. M. Demiralp, Tools Math. Methods Math. Res. 9, 146 (2003)

    Google Scholar 

  17. N.A. Baykara, M. Demiralp, Tools Math. Methods Math. Res. 9, 49 (2003)

    Google Scholar 

  18. O. Alis, H. Rabitz, J. Math. Chem. 25, 197 (1999)

    Article  Google Scholar 

  19. G. Li, J. Phys. Chem. 105, 7765 (2001)

    Article  CAS  Google Scholar 

  20. B. Tunga, M. Demiralp, J. Math. Chem. 48(3), 827 (2010)

    Article  CAS  Google Scholar 

  21. E. Demiralp, M. Demiralp, Proc. Int. Conf. Appl. Comput. Sci. 1, 448 (2010)

    Google Scholar 

  22. M.A. Tunga, Int. J. Comput. Math. 92, 2011 (2015)

  23. E.K. Özay, NUmerical Analysis and Applied Mathematics ICNAAAM 2012. AIP Publishing, vol. 1479 (2012), p. 2015

  24. E. Demiralp, M. Demiralp, in Proceedings of 14th International Conference Computational and Mathematical Methods in Science and Engineering (CMMSE’14) , vol. 14 (2014), p. 446

  25. E.K. Özay, M. Demiralp, in Proceedings of 14th International Conference Computational and Mathematical Methods in Science and Engineering (CMMSE’14), vol. 14 (2014), p. 785

  26. E. Demiralp, M. Demiralp, J. Math. Chem. 51–1, 38 (2013)

    Google Scholar 

  27. B.W. Bader, T.G. Kolda, et al. Matlab tensor toolbox version 2.5. http://www.sandia.gov/~tgkolda/TensorToolbox (2012)

  28. R. Bro, H. Heimdal, Chemometr. Intell. Lab. Syst. 34–1, 85 (1996)

    Article  Google Scholar 

  29. R. Bro, Ph.D. thesis, University of Amsterdam (NL) and Royal Veterinary and Agricultural University (DK) (1998)

  30. L. Nrgaard, C. Ridder, Chemometr. Intell. Lab. Syst. 23-1, 107 (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evrim Korkmaz Özay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özay, E.K., Demiralp, M. Weighted tridiagonal matrix enhanced multivariance products representation (WTMEMPR) for decomposition of multiway arrays: applications on certain chemical system data sets. J Math Chem 55, 455–476 (2017). https://doi.org/10.1007/s10910-016-0687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0687-7

Keywords

Navigation