Skip to main content
Log in

Hyperspectral X-ray Imaging with TES Detectors for Nanoscale Chemical Speciation Mapping

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We are developing an imaging capability (“Hyperspectral X-ray Imaging”) for mapping chemical information (molecular formula, phase, oxidation state, hydration) that is based on ultra-high-resolution X-ray emission spectroscopy with large transition-edge sensor microcalorimeter arrays in the scanning electron microscope. By combining microcalorimeter arrays with hundreds of pixels, high-bandwidth microwave frequency-division multiplexing, and fast digital electronics for near real-time data processing, our goal is to enable measurements using laboratory-scale instrumentation rather than synchrotron beamlines. Our application focus here is on mapping the chemical form of uranium compounds on the nanoscale. We will present our approach to developing the Hyperspectral X-ray Imaging capability, progress toward a 128-pixel microwave multiplexed X-ray fluorescence instrument at LANL, and the path to high-throughput nanoscale chemical mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P.G. Martin, M. Davies-Milner, J. Nicholson, D. Richards, Y. Yamashiki, T. Scott, Spectrochim. Acta Part B At. Spectrosc. 117, 1–7 (2016). https://doi.org/10.1016/j.sab.2015.12.010

    Article  ADS  Google Scholar 

  2. S. Shaban, A.K.L. Zeinab, W. Zidan, E. Elshereafy, Chem. Mater. Res. 7, 73–81 (2015)

    Google Scholar 

  3. J.H. Park, S. Park, K. Song, Mass Spectrom. Lett. 4, 51–54 (2013). https://doi.org/10.5478/MSL.2013.4.3.51

    Article  Google Scholar 

  4. X.D. Wen, M.W. Löble, E.R. Batista, E. Bauer, K.S. Boland, A.K. Burrell, S.D. Conradson, S.R. Daly, S.A. Kozimor, S.G. Minasian, R.L. Martin, T.M. McCleskey, B.L. Scott, D.K. Shuh, T. Tyliszczak, J. Electron Spectros. Relat. Phenomena. 194, 81–87 (2014). https://doi.org/10.1016/j.elspec.2014.03.005

    Article  Google Scholar 

  5. J.G. Tobin, S.W. Yu, R. Qiao, W.L. Yang, C.H. Booth, D.K. Shuh, A.M. Duffin, D. Sokaras, D. Nordlund, T.C. Weng, Phys. Rev. B 92, 1–5 (2015). https://doi.org/10.1103/PhysRevB.92.045130

    Article  Google Scholar 

  6. D.E. Crean, F.R. Livens, M.C. Stennett, D. Grolimund, C.N. Borca, N.C. Hyatt, Environ. Sci. Technol. 48, 1467–1474 (2014). https://doi.org/10.1021/es403938d

    Article  ADS  Google Scholar 

  7. K. Sanyal, A. Khooha, G. Das, M.K. Tiwari, N.L. Misra, Anal. Chem. 89, 871–876 (2017). https://doi.org/10.1021/acs.analchem.6b03945

    Article  Google Scholar 

  8. J.G. Tobin, C.H. Booth, W. Siekhaus, D.K. Shuh, J. Vac. Sci. Technol. A 33, 033001 (2015). https://doi.org/10.1116/1.4915893

    Article  Google Scholar 

  9. P. Kuisma-Kursula, X-Ray Spectrom. 29, 111–118 (2000)

    Article  ADS  Google Scholar 

  10. D.A. Wollman, K.D. Irwin, G.C. Hilton, L.L. Dulcie, D.E. Newbury, J.M. Martinis, J. Microsc 188(3), 196–223 (1997). https://doi.org/10.1046/j.1365-2818.1997.2670824.x

    Article  Google Scholar 

  11. D.A. Wollman, D.E. Newbury, G.C. Hilton, K.D. Irwin, L.L. Dulcie, N.F. Bergren, J.M. Martinis, Microsc. Microanal. 4(2), 196–197 (1998)

    Article  ADS  Google Scholar 

  12. S.W. Nam, D.A. Wollman, D.E. Newbury, G.C. Hilton, K.D. Irwin, D.A. Rudman, S. Deiker, N.F. Bergren, J.M. Martinis, Microsc. Microanal. 7(2), 1050–1051 (2001)

    Article  Google Scholar 

  13. J. Uhlig et al., J. Synchrotron Radiat. 22, 766–775 (2015). https://doi.org/10.1107/S1600577515004312

    Article  Google Scholar 

  14. R. Cantor, M.P. Croce, G.J. Havrilla, M.H. Carpenter, K. McIntosh, J.A. Hall, S.A. Kozimor, H. Naito, M.W. Rabin, D.R. Schmidt, D. Swetz, J.N. Ullom, Microsc. Microanal. 22, 434–435 (2016). https://doi.org/10.1017/S1431927616003020

    Article  ADS  Google Scholar 

  15. G.J. Havrilla, K. Mcintosh, M. Croce, R. Huber, D. Podlesak, M. Rabin, F. Vila, M.H. Carpenter, R. Cantor, Microsc. Microanal. 23, 1060–1061 (2017). https://doi.org/10.1017/S1431927617005967

    Article  ADS  Google Scholar 

  16. M. Suga, S. Asahina, Y. Sakuda, H. Kazumori, H. Nishiyama, T. Nokuo, V. Alfredsson, T. Kjellman, S.M. Stevens, H.S. Cho, M. Cho, L. Han, S. Che, M.W. Anderson, F. Schüth, H. Deng, O.M. Yaghi, Z. Liu, H.Y. Jeong, A. Stein, K. Sakamoto, R. Ryoo, O. Terasaki, O. Terasaki, Prog. Solid State Chem. 42, 1–21 (2014). https://doi.org/10.1016/j.progsolidstchem.2014.02.001

    Article  Google Scholar 

  17. T. Jach, Surf. Interface Anal. 42, 1646–1649 (2010). https://doi.org/10.1002/sia.3598

    Article  Google Scholar 

  18. R. Cantor, H. Naito, R. Terborg, Microsc. Microanal. 18, 1228–1229 (2012). https://doi.org/10.1017/S1431927612007994

    Article  ADS  Google Scholar 

  19. N.W.M. Ritchie, NIST DTSA-II software, https://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html

  20. A.L. Tamasi, L.J. Cash, W.T. Mullen, A.R. Ross, C.E. Ruggiero, B.L. Scott, G.L. Wagner, J.R. Walenskey, S.A. Zerkle, M.P. Wilkerson, J. Radioanal. Nucl. Chem. 309(2), 827–832 (2016). https://doi.org/10.1007/s10967-016-4692-x

    Article  Google Scholar 

  21. A.E. Szymkowiak, R.L. Kelley, S.H. Moseley, C.K. Stahle, J. Low Temp. Phys. 93, 281–285 (1993). https://doi.org/10.1007/BF00693433

    Article  ADS  Google Scholar 

  22. L.L. Makarov, A.A. Solomennikov, Radiochemistry. 46, 536–544 (2004). https://doi.org/10.1007/s11137-005-0023-8

    Article  Google Scholar 

  23. Y.F. Batrakov, A.G. Krivitsky, O.V. Pospelov, E.V. Puchkova, Radiochim. Acta. 92, 73–80 (2004). https://doi.org/10.1524/ract.92.2.73.27465

    Article  Google Scholar 

  24. C.J. Fontes, H.L. Zhang, J. Abdallah, R.E.H. Clark, D.P. Kilcrease, J. Colgan, R.T. Cunningham, P. Hakel, N.H. Magee, M.E. Sherrill, J. Phys. B At. Mol. Opt. Phys. 48, 144014 (2015). https://doi.org/10.1088/0953-4075/48/14/144014

    Article  ADS  Google Scholar 

  25. L.L. Makarov, I.G. Suzlobova, R.I. Karazuya, Y.M. Zautzev, Y.F. Batrakov, N.P. Chubusov, Vestn. Leningr. Univ. 16, 87–96 (1975)

    Google Scholar 

  26. J.J. Friel, C.E. Lyman, Microsc. Microanal. 12, 2–25 (2006)

    Article  ADS  Google Scholar 

  27. J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning electron microscopy and x-ray microanalysis, 4 ed. Springer, Berlin. (2018). https://doi.org/10.1007/978-1-4615-0215-9

  28. D. Yan, R. Divan, L.M. Gades, P. Kenesei, T.J. Madden, A. Miceli, J.S. Park, U.M. Patel, O. Quaranta, H. Sharma, D.A. Bennett, W.B. Doriese, J.W. Fowler, J.D. Gard, J.P. Hays-Wehle, K.M. Morgan, D.R. Schmidt, D.S. Swetz, J.N. Ullom, Appl. Phys. Lett. 111, 192602 (2017). https://doi.org/10.1063/1.5001198

    Article  ADS  Google Scholar 

  29. J.A.B. Mates, D.T. Becker, D.A. Bennett, B.J. Dober, J.D. Gard, J.W. Fowler, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 111, 062601 (2017). https://doi.org/10.1063/1.4986222

    Article  ADS  Google Scholar 

  30. T.J. Madden, J.P. Hays-Wehle, T.W. Cecil, J.D. Gard, D.T. Becker, L.R. Vale, A. Miceli, J.A.B. Mates, D. Yan, G.C. Hilton, J.N. Ullom, L.M. Gades, D.A. Bennett, D.R. Schmidt, C.D. Reintsema, D.S. Swetz, O. Quaranta, I.E.E.E. Trans, Appl. Supercond. 27(4), 1–4 (2017). https://doi.org/10.1109/tasc.2017.2650903

    Article  Google Scholar 

  31. J.D. Gard, D.T. Becker, D.A. Bennett, J.W. Fowler, G.C. Hilton, J.A.B. Mates, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, J.N. Ullom, J. Low Temp. Phys. 193, 485–497 (2018). https://doi.org/10.1007/s10909-018-2012-2

    Article  ADS  Google Scholar 

  32. R. Redus, A. Huber, X-Ray Spectrom. 41, 401–409 (2012). https://doi.org/10.1002/xrs.2420

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under Project Number 20190002DR, and from The NIST Innovations in Measurement Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Carpenter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpenter, M.H., Croce, M.P., Baker, Z.K. et al. Hyperspectral X-ray Imaging with TES Detectors for Nanoscale Chemical Speciation Mapping. J Low Temp Phys 200, 437–444 (2020). https://doi.org/10.1007/s10909-020-02456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02456-9

Keywords

Navigation