Skip to main content
Log in

Cholic Acid-Functionalized Mesoporous Silica Nanoparticles Loaded With Ruthenium Pro-drug Delivery to Cervical Cancer Therapy

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Effective delivery of therapeutic molecules by proper surface-modified nanomaterial can disallow the progression of cancer. We report an effective treatment approach based on targeted delivery of ruthenium pro-drug (Ru) by poly ethylamine (PEI) coated ZnO–SiO2 core–shell nanoparticle for encapsulating large quantity of Ru pro-drug and subsequently grafted with functionalized with cholic acid (CA) as a tumor-specific moiety. An elaborate mechanism of core–shell formation and the size, composition, and morphology were characterized with diverse physiochemical studies such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Further, the anti-tumor activity of CA–Ru–PEI–ZnO–SiO2 nanoparticle was confirmed by in vitro studies. The synthesized CA–Ru–PEI–ZnO–SiO2 has a wide core with thicker outer shell showed excellent biocompatibility and a high potential for loading Ru pro-drug for anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O. Ginsburg, F. Bray, M.P. Coleman, The global burden of women’s cancers: an unmet grand challenge in global health. Lancet 389, 847 (2016)

    Article  Google Scholar 

  2. J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20 (2017)

    Article  CAS  Google Scholar 

  3. S. Gupta, Y. Pathak, M.K. Gupta, S.P. Vyas, Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted. Artif. Cells Nanomed. Biotechnol. 47(1), 4066–4088 (2019)

    Article  CAS  Google Scholar 

  4. D. Howard, J. Garcia-Parra, G.D. Healey, C. Amakiri, L. Margarit, L.W. Francis, D. Gonzalez, R.S. Conlan, Antibody–drug conjugates and other nanomedicines: the frontier of gynaecological cancer treatment. Interface Focus 6(6), 20160054 (2016)

    Article  Google Scholar 

  5. J. Lou, L. Zhang, G. Zheng, Advancing cancer immunotherapies with nanotechnology. Adv. Ther. 2(4), 1800128 (2019)

    Article  Google Scholar 

  6. F. Din, W. Aman, I. Ullah, O.S. Qureshi, O. Mustapha, S. Shafique, A. Zeb, Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291 (2017)

    Article  Google Scholar 

  7. S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude, F. Kiessling, T. Lammers, Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Delivery Rev 130, 17 (2018)

    Article  CAS  Google Scholar 

  8. K. Mondal, A. Sharma, Recent advances in the synthesis and application of photocatalytic metal–metal oxide core–shell nanoparticles for environmental remediation and their recycling process. RSC Adv. 6, 83589–83612 (2016)

    Article  CAS  Google Scholar 

  9. H. Wang, L. Chen, Y. Feng, H. Chen, Exploiting core–shell synergy for nanosynthesis and mechanistic investigation. Acc. Chem. Res. 46, 1636–1646 (2013)

    Article  CAS  Google Scholar 

  10. H. Pang, Z. Zhao, J.W. Ding, R.M. Zhu, The synthesis and electrochemical applications of core–shell MOFs and their derivatives. J. Mater. Chem. A 7, 15519 (2019)

    Article  Google Scholar 

  11. H. DzudzevicCancar, S. Soylemez, Y. Akpinar, M. Kesik, S. Göker, G. Gunbas, M. Volkan, L. Toppare, A novel acetylcholinesterase biosensor: core–shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces 8, 8058–8067 (2016)

    Article  CAS  Google Scholar 

  12. S. Kayal, R.V. Ramanujan, Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe@ Au) for magnetic drug targeting. J. Nanosci. Nanotechnol. 10(9), 5527–5539 (2010)

    Article  CAS  Google Scholar 

  13. D. Mangalaraj, D.N. Devi, Ag/TiO2 (metal/metal oxide) core shell nanoparticles for biological applications, in Recent Trends in Materials Science and Applications, ed. by J. Ebenezar (Springer, Cham, 2017), pp. 9–17

    Chapter  Google Scholar 

  14. V. Sharma, D. Anderson, A. Dhawan, Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17(8), 852–870 (2012)

    Article  CAS  Google Scholar 

  15. X. Zhao, X. Ren, R. Zhu, Z. Luo, B. Ren, Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat. Toxicol. 180, 56–70 (2016)

    Article  CAS  Google Scholar 

  16. Y. Singh, M. Palombo, P.J. Sinko, Recent trends in targeted anticancer pro-drug and conjugate design. Curr. Med. Chem. 15(18), 1802–1826 (2008)

    Article  CAS  Google Scholar 

  17. H. Kobayashi, R. Watanabe, P.L. Choyke, Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4(1), 81 (2014)

    Article  CAS  Google Scholar 

  18. R.M. Mohammad, I. Muqbil, L. Lowe, C. Yedjou, H.Y. Hsu, L.T. Lin, M.D. Siegelin, C. Fimognari, N.B. Kumar, Q.P. Dou, H. Yang, Broad targeting of resistance to apoptosis in cancer, in Seminars in Cancer Biology, vol. 35, ed. by B. Anupam, B. Keith (Academic Press, Cambridge, 2015), pp. S78–S103

    Google Scholar 

  19. W.H. Chen, X.D. Xu, G.F. Luo, H.Z. Jia, Q. Lei, S.X. Cheng, R.X. Zhuo, X.Z. Zhang, Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage. Sci. Rep. 3, 3468 (2013)

    Article  Google Scholar 

  20. H. Yang, R.M. Villani, H. Wang, M.J. Simpson, M.S. Roberts, M. Tang, X. Liang, The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res. 37(1), 266 (2018)

    Article  CAS  Google Scholar 

  21. S.K. Golombek, J.-N. May, B. Theek, L. Appold, N. Drude, F. Kiessling, T. Lammers, Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17 (2018)

    Article  CAS  Google Scholar 

  22. J. Kydd, R. Jadia, P. Velpurisiva, A. Gad, S. Paliwal, P. Rai, Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics 9, 46 (2017)

    Article  Google Scholar 

  23. S. Gupta, M.K. Gupta, Possible role of nanocarriers in drug delivery against cervical cancer. Nano Rev. Exp. 8, 1335567 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the College of Clinical Medicine, Yangzhou University, China for availing the needed laboratory and instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxin Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W. Cholic Acid-Functionalized Mesoporous Silica Nanoparticles Loaded With Ruthenium Pro-drug Delivery to Cervical Cancer Therapy. J Inorg Organomet Polym 31, 311–318 (2021). https://doi.org/10.1007/s10904-020-01710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01710-7

Keywords

Navigation