Skip to main content
Log in

Determination of Angiotensin-(1–7) with HPLC/Fluorescence-Detection

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Angiotensin-(1–7) is an important active component in the renin-angiotensin-system. Due to its cardio protective effects it is now under investigation in combination with antioxidants as a reperfusion solution. The combination showed impressive effects on isolated hearts of male Wistar rats after induced ischemia. In this work a high performance liquid chromatography method with fluorescence detection was developed for the first time for in-process measurements as well as for stability tests of the peptide in the novel antioxidant-containing Karal® solution. For fluorescence detection of angiotensin-(1–7) fluorescamine as derivatization dye was applied. Under optimized conditions the method showed linearity over the range of 50 to 5000 ng/mL with R2 of 0.9988 and an overall precision better than 5.0 %. LOD and LOQ were determined to be in the femtomol range on column. It was found that stability of angiotensin-(1–7) could be significantly improved in the antioxidant containing preparation compared to aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Santos RA, Campagnole-Santos MJ, Andrade SP (2000) Angiotensin-(1–7): an update. Regul Pept 91:45–62. doi:10.1016/S0167-0115(00)00138-5

    Article  PubMed  CAS  Google Scholar 

  2. Santos RA, Ferreira AJ, Simões-e-Silva AC (2008) Recent advances in the angiotensin-converting enzyme 2-angiotensin(1–7)-Mas axis. Exp Physiol 93:519–527. doi:10.1113/expphysiol.2008.042002

    Article  PubMed  CAS  Google Scholar 

  3. Santos RA, Ferreira AJ, Verano-Braga T, Bader M (2013) Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin-angiotensin system. J Endocrinol 216:R1–R17. doi:10.1530/JOE-12-0341

    Article  PubMed  CAS  Google Scholar 

  4. Goswami SK, Maulik N, Das DK (2007) Ischemia‐reperfusion and cardioprotection: a delicate balance between reactive oxygen species generation and redox homeostasis. Ann Med 39:275–289. doi:10.1080/07853890701374677

    Article  PubMed  CAS  Google Scholar 

  5. Neves LA, Almeida AP, Khosla MC, Campagnole-Santos MJ, Santos RA (1997) Effect of angiotensin-(1–7) on reperfusion arrhythmias in isolated rat hearts. Braz J Med Biol Res 30(6):801–809. doi:10.1590/S0100-879X1997000600016

    Article  PubMed  CAS  Google Scholar 

  6. Ferreira AJ, Santos RA, Almeida AP (2001) Angiotensin-(1–7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38:665–668. doi:10.1161/01.HYP.38.3.665

    Article  PubMed  CAS  Google Scholar 

  7. Donnarumma F, Wintersteiger R, Schober M, Greilberger J, Matzi V, Maier A, Schwarz M, Ortner A (2013) Simultaneous quantitation of alpha-ketoglutaric acid and 5-hydroxymethylfurfural in plasma by HPLC with UV and fluorescence detection. Anal Sci 29:1177–1182. doi:10.2116/analsci.29.1177

    Article  PubMed  CAS  Google Scholar 

  8. Groke K, Herwig R (C.Y.L. Handelsges. m.b.H., Austria) WO2004047832 A1 (2004)

  9. Schwarz M, Greilberger J, Lamacie M, Wasler A, Wintersteiger R, Lang I, Santos RA (2012) Alpha-ketoglutarate, 5-hydroxy-methylfurfurale and angiotensin 1–7: cardioprotective effects during myocardial ischemia/reperfusion. Can J Cardiol 28:S132. doi:10.1016/j.cjca.2012.07.123

    Article  Google Scholar 

  10. Hardt-Stremayr M, Bernaskova M, Hauser S, Kunert O, Guo X, Stephan J, Spreitz J, Lankmayr E, Schmid MG, Wintersteiger R (2012) Development and validation of an HPLC method to determine metabolites of 5-hydroxymethylfurfural (5-HMF). J Sep Sci 35:2567–2574. doi:10.1002/jssc.201200251

    Article  PubMed  CAS  Google Scholar 

  11. Donnarumma F, Schober M, Greilberger J, Matzi V, Lindenmann J, Maier A, Herwig R, Wintersteiger R (2011) Method development and validation for the analysis of a new anti-cancer infusion solution via HPLC. J Sep Sci 34:135–141

    Article  PubMed  CAS  Google Scholar 

  12. Pelegrini-da-Silva A, Prado WA, Juliano MA, Wilk S, Martins AR (2002) High-performance liquid chromatographic separation of renin–angiotensin system peptides and most of their metabolic fragments. J Chromatogr B 780:301–307. doi:10.1016/S1570-0232(02)00542-1

    Article  CAS  Google Scholar 

  13. Ali Q, Wu Y, Nag S, Hussain T (2014) Estimation of angiotensin peptides in biological samples by LC–MS method. Anal Methods 6:215–222. doi:10.1039/C3AY41305E

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Bujak-Gizycka B, Madej J, Wolkow PP, Olszanecki R, Drabik L, Rutowski J, Korbut R (2007) Measurement of angiotensin metabolites in organ bath and cell culture experiments by liquid chromatography - electrospray ionization - mass spectrometry (LC-ESI-MS). J Physiol Pharmacol 58:529–540

    PubMed  CAS  Google Scholar 

  15. Cui L, Nithipatikom K, Campbell WB (2007) Simultaneous analysis of angiotensin peptides by LC–MS and LC–MS/MS: metabolism by bovine adrenal endothelial cells. Anal Biochem 369:27–33. doi:10.1016/j.ab.2007.06.045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Kajiro T, Nakajima Y, Fukushima T, Imai K (2002) A method to evaluate the renin − angiotensin system in rat renal cortex using a microdialysis technique combined with HPLC-fluorescence detection. Anal Chem 74:4519–4525. doi:10.1021/ac020059j

    Article  PubMed  CAS  Google Scholar 

  17. Tenorio-López FA, Zarco-Olvera G, Sánchez-Mendoza A, Rosas-Peralta M, Pastelín-Hernández G, del Valle-Mondragón L (2010) Simultaneous determination of angiotensins II and 1–7 by capillary zone electrophoresis in plasma and urine from hypertensive rats. Talanta 80:1702–1712. doi:10.1016/j.talanta.2009.10.010

    Article  PubMed  Google Scholar 

  18. Nussberger J, Brunner DB, Nyfeler JA, Linder L, Brunner HR (2001) Measurement of immunoreactive angiotensin-(1–7) heptapeptide in human blood. Clin Chem 47(4):726–729

    PubMed  CAS  Google Scholar 

  19. Ocaranza MP, Palomera C, Román M, Bargetto J, Lavandero S, Jalil JE (2006) Effect of hypertension on angiotensin-(1–7) levels in rats with different angiotensin-I converting enzyme polymorphism. Life Sci 78:1535–1542. doi:10.1016/j.lfs.2005.07.026

    Article  PubMed  CAS  Google Scholar 

  20. Senanayake P, Moriguchi A, Kumagai H, Ganten D, Ferrario CM, Brosnihan KB (1994) Increased expression of angiotensin peptides in the brain of transgenic hypertensive rats. Peptides 15:919–926

    Article  PubMed  CAS  Google Scholar 

  21. Sakamoto Y, Miyazaki T, Kai M, Ohkura Y (1986) Sensitive assay for serum angiotensin-converting enzyme and separation of angiotensin analogues by high-performance liquid chromatography with fluorescence detection. J Chromatogr B 380:313–320. doi:10.1016/S0378-4347(00)83659-2

    Article  CAS  Google Scholar 

  22. Kai M, Miyazaki T, Sakamoto Y, Ohkura Y (1985) Use of benzoin as pre-column fluorescence derivatization reagent for the high-performance liquid chromatography of angiotensins. J Chromatogr A 322:473–477. doi:10.1016/S0021-9673(01)97713-1

    Article  CAS  Google Scholar 

  23. Boppana VK, Miller-Stein C, Politowski JF, Rhodes GR (1991) High-performance liquid chromatographic determination of peptides in biological fluids by automated pre-column fluorescence derivatization with fluorescamine. J Chromatogr 548:319–327. doi:10.1016/S0021-9673(01)88614-3

    Article  PubMed  CAS  Google Scholar 

  24. He Y, Zhao L, Yuan H, Xu Z, Tang Y, Xiao D, Choi MM (2011) HPLC with in-capillary optical fiber laser-induced fluorescence detection of picomolar amounts of amino acids by precolumn fluorescence derivatization with fluorescein isothiocyanate. Chromatographia 74:541–547. doi:10.1007/s10337-011-2112-5

    Article  CAS  Google Scholar 

  25. Zhang L, Li Y, Zhou H, Li L, Wang Y, Zhang Y (2012) Determination of eight amino acids in mice embryonic stem cells by pre-column derivatization HPLC with fluorescence detection. J Pharm Biomed 66:356–358. doi:10.1016/j.jpba.2012.03.014

    Article  CAS  Google Scholar 

  26. Buha SM, Panchal A, Panchal H, Chambhare R, Patel PR, Kumar S, Jain M (2011) HPLC-FLD for the simultaneous determination of primary and secondary amino acids from complex biological sample by pre-column derivatization. J Chromatogr Sci 49:118–123. doi:10.1093/chrsci/49.2.118

    Article  PubMed  CAS  Google Scholar 

  27. Lindroth P, Mopper K (1979) High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal Chem 51:1667–1674. doi:10.1021/ac50047a019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Ortner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russ, M., Hauser, S., Wintersteiger, R. et al. Determination of Angiotensin-(1–7) with HPLC/Fluorescence-Detection. J Fluoresc 26, 81–86 (2016). https://doi.org/10.1007/s10895-015-1686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1686-y

Keywords

Navigation