Skip to main content
Log in

Dimension Breaking from Spatially-Periodic Patterns to KdV Planforms

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The problem of dimension breaking, for gradient elliptic partial differential equations in the plane, from a family of one-dimensional spatially periodic patterns (rolls) is considered. Conditions on the family of rolls are determined that lead to dimension breaking in the plane governed by a KdV equation relative to the periodic state. Since the KdV equation is time-independent, the \(N\)-pulse solutions of KdV provide a sequence of multi-pulse planforms in the plane bifurcating from the rolls. The principal examples are the nonlinear Schrödinger equation, with evolution in the plane, and the steady Swift–Hohenberg equation with weak transverse variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kirchgässner, K., Schaaf, R.: Homoclinic bifurcation from fold points for nonlinear elliptic problems on cylindrical domains. Preprint (1994)

  2. Hărăguş, M., Kirchgässner, K.: Breaking the dimension of a steady wave: some examples, nonlinear dynamics and pattern formation in the natural environment (Noordwijkerhout, 1994). Pitman Res. Notes Math. Ser. 335, 119–129 (1995)

    Google Scholar 

  3. Hărăguş, M., Kirchgässner, K.: Breaking the dimension of solitary waves. Pitman Res. Notes Math. Ser. 345, 216–228 (1996)

    Google Scholar 

  4. Hărăguş-Courcelle, M.: Rupture de dimension non locale en des points de retournement. Comptes Rendus (I Mathematics) 327, 149–154 (1998)

    MATH  Google Scholar 

  5. Hărăguş, M., Pego, R.L.: Travelling waves of KP equations with transverse modulations. C.R. Acad. Sci. Paris, Sér 1 328, 227–232 (1999)

    Article  MATH  Google Scholar 

  6. Dias, F., Hărăguş-Courcelle, M.: On the transition from two-dimensional to three-dimensional water waves. Stud. Appl. Math. 104, 91–127 (2001)

    Article  Google Scholar 

  7. Groves, M.D., Hărăguş, M., Sun, S.M.: A dimension-breaking phenomenon in the theory of steady gravity-capillary water waves. Phil. Trans. Royal Soc. Lond. A 360, 2189–2243 (2002)

    Article  MATH  Google Scholar 

  8. Bridges, T.J., Derks, G.: Dimension breaking of gradient elliptic operators. In: Proceedings of the Conference on Nonlinear Analysis in honor of the 70th birthday of Klaus Kirchgässner, Jan 6–10, Kloster Irsee, Germany (2002)

  9. Doelman, A., Sandstede, B., Scheel, A., Schneider, G.: The Dynamics of Modulated Wave Trains. AMS Memoirs. American Mathematical Society, Providence (2009)

    Google Scholar 

  10. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  11. Bridges, T.J.: A universal form for the emergence of the Korteweg-de Vries equation. Proc. Royal Soc. London A 469, 20120707 (2013)

    Article  MathSciNet  Google Scholar 

  12. Maddocks, J.H., Sachs, R.L.: On the stability of KdV multi-solitons. Commun. Pure Appl. Math. 46, 867–901 (1993)

  13. Chirilus-Bruckner, M., Düll, W.-P., Schneider, G.: Validity of the KdV equation for the modulation of periodic traveling waves in the NLS equation. J. Math. Anal. Appl. 414, 166–175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yue, D.K.P., Mei, C.C.: Forward diffraction of Stokes waves by a thin wedge. J. Fluid Mech. 99, 33–52 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rabier, P.J.: Generalized Jordan chains and two bifurcation theorems of Krasnoselskii. Nonlinear Anal. 13, 903–934 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gohberg, I., Lancaster, P., Rodman, L.: Matrix Polynomials. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  17. Bridges, T.J.: Bifurcation from rolls to multi-pulse planforms via reduction to a parabolic Boussinesq model. Physica D 275, 8–18 (2014)

    Article  MathSciNet  Google Scholar 

  18. Chardard, F., Dias, F., Bridges, T.J.: Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients. J. Phys. A 39, 14545 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chardard, F., Dias, F., Bridges, T.J.: Computing the Maslov index of solitary waves part 1: Hamiltonian systems on a four-dimensional phase space. Physica D 238, 1841–1867 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Helpful discussions with Sergey Zelik are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Bridges.

Additional information

Dedicated to the memory of Klaus Kirchgässner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bridges, T.J. Dimension Breaking from Spatially-Periodic Patterns to KdV Planforms. J Dyn Diff Equat 27, 443–456 (2015). https://doi.org/10.1007/s10884-014-9405-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9405-y

Keywords

Navigation