Skip to main content
Log in

KdV Hamiltonian as a Function of Actions

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We prove that the non-linear part of the Hamiltonian of the KdV equation on the circle, written as a function of the actions, defines a continuous convex function on the 2 space and derive for it lower and upper bounds in terms of some functions of the 2-norm. The proof is based on a new representation of the Hamiltonian in terms of the quasimomentum, obtained via the conformal mapping theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. About the behavior of K(I) of the finite-dimensional subspaces \(\tilde \ell ^{N}\), defined below in Eq. 1.11, we know more. See in [20] and below in Introduction.

References

  1. Bobenko A, Kuksin S. Finite-gap periodic solutions of the KdV equation are nondegenerate. Phys Lett A 1991;161(3):274–276.

    Article  MathSciNet  Google Scholar 

  2. Bikbaev R, Kuksin S. On the parametrization of finite-gap solutions by frequency and wavenumber vectors and a theorem of I. Krichever. Lett Math Phys 1993;28(2):115–122.

    Article  MathSciNet  MATH  Google Scholar 

  3. Flaschka H, McLaughlin D. Canonically conjugate variables for the Korteveg- de Vries equation and the Toda lattice with periodic boundary conditions. Prog Theor Phys 1976;55:438–456.

    Article  MATH  Google Scholar 

  4. Huang G, Kuksin SB. KdV equation under periodic boundary conditions and its perturbations. Nonlinearity 2014;27:1–28.

    Article  MathSciNet  MATH  Google Scholar 

  5. Jenkins A. Univalent functions and conformal mapping. Berlin: Springer; 1958.

    Book  MATH  Google Scholar 

  6. Kappeler T. Fibration of the phase space for the Korteveg-de-Vries equation. Ann Inst Fourier (Grenoble) 1991;41(1):539–575.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kappeler T, Pöschel J. KdV & KAM: Springer; 2003.

  8. Kappeler T, Topalov P. Global wellposedness of KdV in \(H^{-1}(\mathbb T,\mathbb R)\), Duke. Math J 2006;135(2):327–360.

  9. Kargaev P, Korotyaev E. The inverse problem for the Hill operator, direct approach. Invent Math 1997;129(3):567–593.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kargaev P, Korotyaev E. Effective masses conformal mappings. Commun Math Phys 1995;169:597–625.

    Article  MathSciNet  MATH  Google Scholar 

  11. Korotyaev E. Metric properties of conformal mappings on the complex plane with parallel slits. Inter Math Reseach Notices 1996;10:493–503.

    Article  MathSciNet  MATH  Google Scholar 

  12. Korotyaev E. Characterization of the spectrum of Schrödinger operators with periodic distributions. Int Math Res Not 2003;37:2019–2031.

    Article  MATH  Google Scholar 

  13. Korotyaev E. Estimates for the Hill operator.I. J Diff Eq 2000;162:1–26.

    Article  MathSciNet  MATH  Google Scholar 

  14. Korotyaev E. Estimate for the Hill operator.II. J Differential Equations 2006;223 (2):229–260.

    Article  MathSciNet  MATH  Google Scholar 

  15. Korotyaev E. The estimates of periodic potentials in terms of effective masses. Commun Math Phys 1997;183:383–400.

    Article  MathSciNet  MATH  Google Scholar 

  16. Korotyaev E. Estimate of periodic potentials in terms of gap lengths. Commun Math Phys 1998;197(3):521–526.

    Article  MathSciNet  MATH  Google Scholar 

  17. Korotyaev E. Periodic “weighted” operators. J Differential Equations 2003;189(2): 461–486.

    Article  MathSciNet  MATH  Google Scholar 

  18. Krein M. On the characteristic function A(λ) of a linear canonical system differential equation of the second order with periodic coefficients (Russian). Prikl Mat Meh 1957;21:320–329.

    MathSciNet  Google Scholar 

  19. Krichever IM. Perturbation theory in periodic problems for two-dimensional integrable systems. Sov., Sci Rev C Math Phys 1991;9:1–101.

    MATH  Google Scholar 

  20. Kuksin S B. Analysis of Hamiltonian PDEs, Oxford lecture series in mathematics and its applications, 19. Oxford: Oxford University Press; 2000.

    Google Scholar 

  21. Kuksin S B. Damped-driven KdV and effective equations for long-time behavior of its solutions. Geom Funct Anal 2010;20(6):1431–1463.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuksin SB, Perelman G. Vey theorem in infinite dimensions and its application to KdV. DCDS-A 2010;27:1–24.

    Article  MathSciNet  MATH  Google Scholar 

  23. Levin BYa. Majorants in classes of subharmonic functions. (Russian) Teor. Funktsii Funktsional. Anal. i Prilozhen, 51(1989), 3–17; translation in J. Soviet Math. 52 (1990), no. 6, 3441–3451.

  24. Levin B Ya. The connection of a majorant with a conformal mapping. II. (Russian) Teor. Funktsii Funktsional. Anal. i Prilozhen No. 52 (1989), 3-21; translation in J. Soviet Math. 52 (1990), no. 5, 3351–3364.

  25. Levin B Ya. Classification of closed sets on R and representation of a majorant. III. (Russian) Teor. Funktsii Funktsional. Anal. i Prilozhen No. 52 (1989), 21–33; translation in J. Soviet Math., 52 (1990), no. 5, 3364–3372.

  26. Marchenko V, Ostrovski I. A characterization of the spectrum of the Hill operator. Math. USSR Sbornik 1975;26:493–554.

    Article  Google Scholar 

  27. Marchenko V. Sturm-Liouville operators and applications, Revised edition. Providence, RI: AMS Chelsea Publishing; 2011.

    Book  MATH  Google Scholar 

  28. McKean H., Trubowitz E. Hill’s operator and hyperelliptic function theory in the presence of infinitely many branching points. Comm Pure Appl Math 1976;29:143–226.

    Article  MathSciNet  MATH  Google Scholar 

  29. McKean H, Trubowitz E. Hill’s surfaces and their theta functions, Bull. Am Math Soc 1978;84:1042–1085.

    Article  MATH  Google Scholar 

  30. Reed M, Simon B. Methods of modern mathematical physics. IV. Analysis of operators. New York-London: Academic Press; 1978.

    MATH  Google Scholar 

  31. Stein EM. Functions of exponential type. Ann Math 1957;65(2):582–592.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

A first draft of this paper was written at the CMLS, Ecole Polytechnique, France, during E.K.’s visit there in April–July, 2010. E.K. is grateful to the centre for their hospitality. This work was supported by the RSF grant No 15-11-30007, and by l’ Agence Nacionale de la Recherche, grant ANR-10-BLAN 0102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Kuksin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotyaev, E.L., Kuksin, S. KdV Hamiltonian as a Function of Actions. J Dyn Control Syst 22, 661–682 (2016). https://doi.org/10.1007/s10883-015-9289-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-015-9289-0

Keywords

Mathematics Subject Classification (2010)

Navigation