Skip to main content
Log in

Descending surface water at the antarctic marginal ice zone and its contribution to intermediate water: An ice-ocean model

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

This study concerns the unique physical mechanism of Ekman convergence at the marginal ice zone (ECMIZ) produced by the difference between air-ice drag and air-water drag. A coupled ice-ocean model is used to show the strength and distribution of the ECMIZ with respect to Antarctic Intermediate Water (AAIW) formation, which is important for the uptake of carbon dioxide. Strong ECMIZ occurs in the Atlantic and Pacific sectors from July to October, matched in time and space with ice melting, while it is significantly weaker due to strongly divergent background winds in the Indian sector. Transport analysis by artificial tracer experiments reveals the interannual variability of the ECMIZ correlates well with the Southern Annular Mode (SAM). The downward transport of surface water at the MIZ during a positive SAM (2001) is about 1.4 times as large as that during a negative SAM (2000). In particular the transport in the Atlantic sector is twice that in the Pacific sector in both years. Once the downward flux is analyzed in isolation, the contribution from synoptic scale variability is found to increase the volume transport of surface water in the eastern region of the Pacific. Assuming strong isopycnal mixing, we suggest that ECMIZ is an important mechanism supplying surface water to the formation of AAIW, and its zonal variability is responsible for the interbasin differences in AAIW properties. In particular, the increased ECMIZ and surface melt water input in the Atlantic sector would produce AAIW that is colder and fresher than in the Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arblaster, J. M. and G. A. Meehl (2006): Contributions of external forcings to Southern Annular Mode (SAM) trends. J. Climate, 19, 2896–2905.

    Article  Google Scholar 

  • Bryan, K. (1969): A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 4, 347–376.

    Article  Google Scholar 

  • Cai, W., P. H. Whetton and D. J. Karoly (2003): The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO. J. Climate, 16, 1525–1538.

    Article  Google Scholar 

  • Cox, M. D. (1984): A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group Tech. Rep. 1, Geophys. Fluid Dyn. Lab., Princeton, N.J.

    Google Scholar 

  • Deacon, G. E. R. (1933): A general account of the hydrology of the South Atlantic Ocean. Discovery Reports, 7, 171–238.

    Google Scholar 

  • Deacon, G. E. R. (1937): The hydrology of the southern ocean. Discovery Reports, 15, 3–122.

    Google Scholar 

  • Duffy, P. B., M. Eby and A. J. Weaver (1999): Effects of sinking of salt rejected during formation of sea ice on results of an ocean-atmosphere-sea ice climate model. Geophys. Res. Lett., 26, 1739–1742.

    Article  Google Scholar 

  • Fedorov, A. V. and S. G. Philander (2001): A stability analysis of tropical ocean-atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14, 3086–3101.

    Article  Google Scholar 

  • Fichefet, T., B. Tartinville and H. Goose (2003): Antarctic sea ice variability during 1958–1999: A simulation with a global ice-ocean model. J. Geophys. Res., 108(C3), 3102, doi:10.1029/2001JC001148.

    Article  Google Scholar 

  • Fine, R. A., K. A. Maillet, K. F. Sullivan and D. Willey (2001): Circulation and ventilation flux of the Pacific Ocean. J. Geophys. Res. Oceans, 106, 22159–22178.

    Article  Google Scholar 

  • Gent, P. R. and J. C. McWilliams (1990): Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Hakkinen, S. (1986): Coupled ice-ocean dynamics in the marginal ice zones; upwelling/downwelling and eddy generation. J. Geophys. Res., 91, 819–832.

    Article  Google Scholar 

  • Hakkinen, S. (1987): A coupled dynamic-themodynamic model of an ice-ocean system in the marginal ice zone. J. Geophys. Res., 92, 9469–9478.

    Article  Google Scholar 

  • Hakkinen, S. (1988): A note on chimney formation in ice edge regions. J. Geophys. Res., 93, 8279–8282.

    Article  Google Scholar 

  • Hall, A. and M. Visbeck (2002): Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 3043–3057.

    Article  Google Scholar 

  • Hallberg, R. and A. Gnanadesikan (2006): The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 2232–2252.

    Article  Google Scholar 

  • Hibler, W. D. (1979): A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815–846.

    Article  Google Scholar 

  • Hibler, W. D., III and K. Bryan (1987): A diagnostic ice-ocean model. J. Phys. Oceanogr., 17, 987–1015.

    Article  Google Scholar 

  • Ikeda, M. (1985): A coupled ice-ocean model of a wind-driven coastal flow. J. Geophys. Res., 90, 9119–9128.

    Article  Google Scholar 

  • Ikeda, M., H. Shinkai and T. Watanabe (2004): Parametrization of thin ice in a coupled ice-ocean model: Application to the seasonal ice cover in the Sea of Okhotsk. Atmosphere-Ocean, 42, 1–12.

    Article  Google Scholar 

  • Lefebvre, W. and H. Goosse (2008): Analysis of the projected regional sea ice changes in the Southern Ocean during the 21st century. Clim. Dyn., 30, 59–76, doi:10.1007/s00382-007-0273-6.

    Article  Google Scholar 

  • Lenton, A. and R. J. Matear (2007): Role of the Southern Annular Mode (SAM) in Southern Ocean CO2 uptake. Global Biogeochem. Cycles, 21, GB2016, doi:10.1029/2006GB002714.

    Article  Google Scholar 

  • Lovenduski, N. S., N. Gruber, S. C. Doney and I. D. Lima (2007): Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochem. Cycles, 21, GB2026, doi:10.1029/2006GB002900.

    Article  Google Scholar 

  • Lovenduski, N. S., N. Gruber and S. C. Doney (2008): Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochem. Cycles, 22, GB3016, doi:10.1029/2007GB003139.

    Article  Google Scholar 

  • Marshall, G. J. (2003): Trends in the Southern Annular Mode from observations and reanalyses. J. Climate, 14, 4134–4143.

    Article  Google Scholar 

  • Marsland, S. J. and J. O. Wolff (2001): On the sensitivity of the Southern Ocean sea ice to the surface fresh water flux: A model study. J. Geophys. Res., 106, 2723–2741.

    Article  Google Scholar 

  • Molinelli, E. J. (1981): The Antarctic influence on Antarctic Intermediate Water. J. Mar. Res., 39, 267–293.

    Google Scholar 

  • Overland, J. E., H. O. Mofjeld and C. H. Pease (1984): Wind-driven ice drift in a shallow sea. J. Geophys. Res., 89, 6525–6531.

    Article  Google Scholar 

  • Pease, C. H. and J. E. Overland (1984): An atmospherically driven sea-ice drift model for the Bering Sea. Annals of Glaciology, 5, 111–114.

    Article  Google Scholar 

  • Piola, A. R. and D. T. Georgi (1982): Circumpolar properties of Antarctic Intermediate Water and Subantarctic Mode Water. Deep-Sea Res., 29, 687–711.

    Article  Google Scholar 

  • Rauthe, M., A. Hense and H. Paeth (2004): A model intercomparison study of climate change signals in extratropical circulation. Int. J. Climatol., 24, 643–662.

    Article  Google Scholar 

  • Roed, L. P. and J. J. O’Brien (1983): A coupled ice-ocean model of upwelling in the marginal ice zone. J. Geophys. Res., 88, 2863–2872.

    Article  Google Scholar 

  • Sabine, C. L. et al. (2004): The oceanic sink for anthropogenic CO2. Science, 305, 367–371.

    Article  Google Scholar 

  • Saenko, O. A. and A. J. Weaver (2001): Importance of wind-driven sea ice motion for the formation of Antarctic Intermediate Water. Geophys. Res. Lett., 28, 4147–4150.

    Article  Google Scholar 

  • Santoso, A. and M. H. England (2004): Antarctic Intermediate Water circulation and variability in a coupled climate model. J. Phys. Oceanogr., 34, 2160–2179.

    Article  Google Scholar 

  • Sloyan, B. M. and S. R. Rintoul (2001): Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr., 31, 1005–1030.

    Article  Google Scholar 

  • Sorensen, J. V. T., J. Ribbe and G. Shaffer (2001): Antarctic Intermediate Water mass formation in ocean general circulation models. J. Phys. Oceanogr, 31, 3295–3311.

    Article  Google Scholar 

  • Sverdrup, H. U. et al. (1942): The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, New York, 1807 pp.

    Google Scholar 

  • Talley, L. D. (1996): Antarctic Intermediate Water in the South Atlantic. p. 219–238. In The South Atlantic: Present and Past Circulation, ed. by G. Wefer et al., Springer, New York.

    Chapter  Google Scholar 

  • Tanaka, Y. and H. Hasumi (2008): Injection of Antarctic Intermediate Water into the Atlantic subtropical gyre in an eddy resolving ocean model. Geophys. Res. Lett., 35, L11601, doi:10.1029/2007GL032915.

    Article  Google Scholar 

  • Thompson, D. W. J. and S. Solomon (2002): Interpretation of recent Southern Hemisphere climate change. Science, 296, 895–899.

    Article  Google Scholar 

  • Thompson, D. W. J. and J. M. Wallace (2000): Annular modes in the extratropical circulation, Part I: Month-to-month variability. J. Climate, 13, 1000–1016.

    Article  Google Scholar 

  • Timmermann, R., A. P. Worby, H. Gosse and T. Fichefet (2004): Utilizing the ASPeCt sea ice thickness data set to evaluate a global coupled ice ocean model. J. Geophys. Res., 109, C07017, doi:10.1029/2003JC002242.

    Article  Google Scholar 

  • Xie, P. and P. A. Arkin (1996): Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840–858.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Hiraike.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiraike, Y., Ikeda, M. Descending surface water at the antarctic marginal ice zone and its contribution to intermediate water: An ice-ocean model. J Oceanogr 65, 587–603 (2009). https://doi.org/10.1007/s10872-009-0050-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0050-8

Keywords

Navigation