Skip to main content

Advertisement

Log in

Accurate ocean tide modeling in southeast Alaska and large tidal dissipation around Glacier Bay

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

An accurate prediction of ocean tides in southeast Alaska is developed using a regional, barotropic ocean model with a finite difference scheme. The model skill is verified by the observational tidal harmonics in southeast Alaska including Glacier Bay. The result is particularly improved in Glacier Bay compared to the previous model described by Foreman et al. (2000). The model bathymetry dominates the model skill. We re-estimate tidal energy dissipation in the Alaska Panhandle and suggest a value for tidal energy dissipation of 3.4 GW associated with the M2 constituent which is 1.5 times the estimation of Foreman et al. (2000). A large portion of the M2 energy budget entering through Chatham Strait is dissipated in the vicinity of Glacier Bay. Moreover, it is shown that the developed model has the potential to correct the ocean tide loading effect in geodetic data more efficiently than the model of Foreman et al. (2000), especially around Glacier Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1980): Likelihood and Bayes procedure. p. 1–13. In Bayesian Statistics, ed. by J. M. Bernardo, M. H. De Groot, D. V. Lindley and A. F. M. Smith, University Press, Valencia.

    Google Scholar 

  • Allinson, C. R., P. J. Clarke, S. J. Edwards, M. A. King, T. F. Baker and P. R. Cruddace (2004): Stability of direct GPS estimates of ocean tide loading. Geophys. Res. Lett., 31, L15603, doi: 10.1029/2004GL020588.

    Article  Google Scholar 

  • Arakawa, A. and V. R. Lamb (1981): A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 18–36.

    Article  Google Scholar 

  • Asselin, R. (1972): Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490.

    Article  Google Scholar 

  • Carlson, P. R., P. Hooge, G. Cochrane, A. Stevenson, P. Dartnell and K. Lee (2002): Multibeam bathymetry and selected perspective views of main part of Glacier Bay, Alaska. U.S. Geological Survey Open-File Report 02-391. Available at https://doi.org/geopubs.wr.usgs.gov/open-file/of02-391

  • Chen, C., H. Liu and R. C. Beardsley (2003): An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Oceanic Technol., 20, 159–186.

    Article  Google Scholar 

  • Choi, K., A. Bilich, K. M. Larson and P. Axelrad (2004): Modified sidereal filtering: Implications for high-rate GPS positioning. Geophys. Res. Lett., 31, L22608, doi:10.1029/2004GL021621.

    Article  Google Scholar 

  • Cokelet, E. D., A. D. Jenkins and L. L. Etherington (2004): A transect of Glacier Bay ocean currents measured by acoustic Doppler current profiler (ADCP). Proc. 4th Glacier Bay Science Symp., 80–83.

  • Colbo, K. (2006): Lateral Reynolds stress and eddy viscosity in a coastal strait. J. Phys. Oceanogr., 36, 770–783.

    Article  Google Scholar 

  • Cushman-Roisin, B., A. J. Willmott and N. R. T. Biggs (2005): Influence of stratification on decaying surface seiche modes. Cont. Shelf Res., 25, 227–242.

    Article  Google Scholar 

  • Dehant, V., P. Defraigne and J. M. Wahr (1999): Tides for a convective Earth. J. Geophys. Res., 104, 1035–1058.

    Article  Google Scholar 

  • Dziewonski, A. M. and D. L. Anderson (1981): Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.

    Article  Google Scholar 

  • Edwards, K. A., P. MacCready, J. N. Moum, G. Pawlakd, J. M. Klymake and A. Perline (2004): Form drag and mixing due to tidal flow past a sharp point. J. Phys. Oceanogr., 34, 1297–1312.

    Article  Google Scholar 

  • Egbert, G. D. and R. D. Ray (2003): Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, doi:10.1029/2003GL017676.

    Article  Google Scholar 

  • Farrell, W. E. (1972): Deformation of the Earth by surface loads. Rev. Geophys. Space Phys., 10, 761–797.

    Article  Google Scholar 

  • Foreman, M. G. G., R. F. Henry, R. A. Walters and V. A. Ballantyne (1993): A finite element model for tides and resonance along the north coast of British Columbia. J. Geophys. Res., 98, 2509–2531.

    Article  Google Scholar 

  • Foreman, M. G. G., W. R. Crawford, J. Y. Cherniawsky, R. F. Henry and M. R. Tarbotton (2000): A high-resolution assimilating tidal model for the northeast Pacific Ocean. J. Geophys. Res., 105, 28629–28651.

    Article  Google Scholar 

  • Gargett, A. E. (1976): Generation of internal waves in the Strait of Georgia, British Columbia. Deep-Sea Res., 23, 17–32.

    Google Scholar 

  • Hatanaka, Y., A. Sengoku, T. Sato, J. M. Johnson, C. Rocken and C. Meertens (2001): Detection of tidal loading signals from GPS permanent array of GSI Japan. J. Geod. Soc. Japan, 47, 187–192.

    Google Scholar 

  • Hirose, N. and J.-H. Yoon (1996): Barotropic response to the wind in the Japan Sea. Proc. 4th CREAMS Workshop, 39–43.

  • Ishiguro, M., H. Akaike, M. Ooe and S. Nakai (1983): A Bayesian approach to the analysis of Earth tides. p. 283–292. In Proc. 9th Int. Symp. Earth Tides, ed. by J. T. Kuo, E. Schweizerbart’sche Verlangsbuchhandlung, Stuttgart.

    Google Scholar 

  • Japan Hydrographic Association (1999): Research on bottom topography using satellite altimeter data. Japan Hydrographic Association Survey Research Report, 96, 89 pp. (in Japanese).

  • Kantha, L. H. and C. A. Clayson (2000): Numerical Models of Oceans and Oceanic Processes. Academic Press, San Diego, 940 pp.

    Google Scholar 

  • Kim, C.-H. and J.-H. Yoon (1996): Modeling of the wind-driven circulation in the Japan Sea using a reduced gravity model. J. Oceanogr., 52, 359–373.

    Article  Google Scholar 

  • Kowalik, Z. and A. Y. Proshutinsky (1993): Diurnal tides in the Arctic Ocean. J. Geophys. Res., 98, 16449–16468.

    Article  Google Scholar 

  • Larsen, C. F., K. A. Echelmeyer, J. T. Freymueller and R. J. Motyka (2003): Tide gauge records of uplift along the northern Pacific-North American plate boundary, 1937 to 2001. J. Geophys. Res., 108, 2216, doi:10.1029/2001JB001685.

    Article  Google Scholar 

  • Larsen, C. F., R. J. Motyka, J. T. Freymueller, K. A. Echelmeyer and E. R. Ivins (2004): Rapid uplift of southern Alaska caused by recent ice loss. Geophys. J. Int., 158, 1118–1133.

    Article  Google Scholar 

  • Le Provost, C. and F. Lyard (1997): Energetics of the M2 barotropic ocean tides: An estimate of bottom friction dissipation from a hydrodynamic model. Prog. Oceanogr., 40, 37–52.

    Article  Google Scholar 

  • Lefèvre, F., C. Le Provost and F. H. Lyard (2000): How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J. Geophys. Res., 105, 8707–8726.

    Article  Google Scholar 

  • Levitus, S. and T. P. Boyer (1994): World Ocean Atlas 1994, vol. 4, Temperature. NOAA Atlas NESDIS, vol. 4, NOAA, Silver Spring, Md.

    Google Scholar 

  • Levitus, S., R. Burgett and T. P. Boyer (1994): World Ocean Atlas 1994, vol. 3, Salinity. NOAA Atlas NESDIS, vol. 3, NOAA, Silver Spring, Md.

    Google Scholar 

  • Lindquist, K. G., K. Engle, D. Stahlke and E. Price (2004): Global topography and bathymetry grid improves research efforts. EOS, Trans. Am. Geophys. Union, 85, 186.

    Article  Google Scholar 

  • Lyard, F. (1997): The tides in the Arctic Ocean from a finite element model. J. Geophys. Res., 102, 15611–15638.

    Article  Google Scholar 

  • Lyard, F. and C. Le Provost (1997): Energy budget of the tidal hydrodynamic model FES94.1. Geophys. Res. Lett., 24, 687–690.

    Article  Google Scholar 

  • Lyard, F., F. Lefèvre, T. Letellier and O. Francis (2006): Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn., 56, 394–415.

    Article  Google Scholar 

  • Marks, K. M. and W. H. F. Smith (2006): An evaluation of publicly available global bathymetry grids. Mar. Geophys. Res., 27, 19–34.

    Article  Google Scholar 

  • Meier, M. F. and A. Post (1987): Fast tidewater glaciers. J. Geophys. Res., 92, 9051–9058.

    Article  Google Scholar 

  • Miller, G. R. (1966): The flux of tidal energy out of the deep oceans. J. Geophys. Res., 71, 2485–2489.

    Article  Google Scholar 

  • Ono, J., K. I. Ohshima, G. Mizuta, Y. Fukamachi and M. Wakatsuchi (2008): Diurnal coastal-trapped waves on the eastern shelf of Sakhalin in the Sea of Okhotsk and their modification by sea ice. Cont. Shelf Res., 28, 697–709.

    Article  Google Scholar 

  • Pawlowicz, R. (2002): Observations and linear analysis of sillgenerated internal tides and estuarine flow in Haro Strait. J. Geophys. Res., 107, 3056, doi:10.1029/2000JC000504.

    Article  Google Scholar 

  • Prinsenberg, S. J. (1988): Damping and phase advance of the tide in western Hudson Bay by the annual ice cover. J. Phys. Oceanogr., 18, 1744–1751.

    Article  Google Scholar 

  • Rodríguez, G. and M. J. Sevilla (2002): Correlation between sea surface topography and bathymetry in shallow shelf waters in the Western Mediterranean. Geophys. J. Int., 150, 573–587.

    Article  Google Scholar 

  • Sandwell, D. T. and W. H. F. Smith (2001): Chapter 12, Bathymetric estimation. p. 441–457. In Satellite Altimetry and Earth Sciences, ed. by L.-L. Fu and A. Cazenave, Academic Press, San Diego.

    Google Scholar 

  • Sato, T. and H. Hanada (1984): A program for the computation of oceanic tidal loading effects ‘GOTIC’. Publ. Int. Lat. Obs. Mizusawa, 18, 29–47.

    Google Scholar 

  • Sato, T., S. Miura, Y. Ohta, H. Fujimoto, W. Sun, C. F. Larsen, M. Heavner, M. Kaufmanand J. T. Freymueller (2008): Earth tides observed by gravity and GPS in southeastern Alaska. J. Geodyn., 46, 78–89.

    Article  Google Scholar 

  • Smith, W. H. F. and D. T. Sandwell (1997): Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.

    Article  Google Scholar 

  • St. Laurent, L. C. and C. Garrett (2002): The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 2882–2899.

    Article  Google Scholar 

  • St. Laurent, L. C., H. L. Simmons and S. R. Jayne (2002): Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    Article  Google Scholar 

  • Stigebrandt, A. (1999): Resistance to barotropic tidal flow in straits by baroclinic wave drag. J. Phys. Oceanogr., 29, 191–197.

    Article  Google Scholar 

  • Takasu, T. (2006): High-rate Precise Point Positioning: detection of crustal deformation by using 1-Hz GPS data. GPS/GNSS Symp. 2006, Tokyo, 52–59.

  • Takasu, T. and S. Kasai (2005): Development of precise orbit/clock determination software for GPS/GNSS. Proc. 49th Space Sciences and Technology Conference, 1223–1227.

  • Tamura, Y., T. Sato, M. Ooe and M. Ishiguro (1991): A procedure for tidal analysis with a Bayesian information criterion. Geophys. J. Int., 104, 507–516.

    Article  Google Scholar 

  • Tanaka, Y., T. Hibiya and Y. Niwa (2007): Estimates of tidal energy dissipation and diapycnal diffusivity in the Kuril Straits using TOPEX/POSEIDON altimeter data. J. Geophys. Res., 112, C10021, doi: 10.1029/2007JC004172.

    Article  Google Scholar 

  • Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins and F. H. Webb (1997): Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102, 5005–5017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Inazu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inazu, D., Sato, T., Miura, S. et al. Accurate ocean tide modeling in southeast Alaska and large tidal dissipation around Glacier Bay. J Oceanogr 65, 335–347 (2009). https://doi.org/10.1007/s10872-009-0031-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0031-y

Keywords

Navigation