Skip to main content
Log in

The Southern Annular Mode and opposite-phased Basin Mode of the Southern Ocean circulation

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Over the Southern Ocean the dominant modes of the atmospheric field are known as the Southern Annular Mode (SAM) or Antarctic Oscillation, and the Pacific South American (PSA) pattern. Statistical analysis of sea surface wind (SSW) from satellite observation revealed two leading modes of SAM-like and PSA patterns. In the high latitudes, the SAM-like pattern of the SSW had a large amplitude over the Bellingshausen Basin and Australian-Antarctic Basin, with opposite phase between the two basins. On the intraseasonal time scale, large-scale sea surface height (SSH) also had notable variability, showing a basin-scale anti-phase mode over the two basins. To explain the response of oceanic variations to these atmospheric modes, we analyzed the relationship between the dominant modes of wind stress and large-scale SSH on the intraseasonal time scale. The SAM-like pattern of wind stress was correlated with the SSH variation over the two basins. The SSH basin mode was most simply explained by a simple barotropic response to the SAM-like mode of wind stress, with the curl of opposite phase between the two basins. We conclude that the zonal asymmetry of the wind field of the SAM plays an important role in driving the antiphase SSH basin modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, S. (2002): Coherent sea level response to the Antarctic Oscillation. Geophys. Res. Lett., 29, 1950, doi:10.1029/2002GL015733.

    Article  Google Scholar 

  • Cai, W. J. and I. G. Watterson (2002): Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 1159–1174.

    Article  Google Scholar 

  • CLS (2006): SSALTO/DUACS User Handbook: (M)SLA and (M)ADT Near-Real Time and Delayed Time Products (edition 1.5). CLS-DOS-NT-06.034, CLS Space Oceanography Divisin, Toulouse, France, 47 pp.

    Google Scholar 

  • Fu, L.-L. (2003): Wind-forced intraseasonal sea level variability of the extratropical oceans. J. Phys. Oceanogr., 33, 436–449.

    Article  Google Scholar 

  • Fukumori, I., R. Raghunath and L.-L. Fu (1998): The nature of global large-scale sea level variability in relation to atmosphere forcing: A modeling study. J. Geophys. Res., 103, 5493–5512.

    Article  Google Scholar 

  • Ghil, M. and K. Mo (1991): Intraseasonal oscillation in the global atmosphere, Part II: Southern Hemisphere. J. Atmos. Sci., 48, 780–790.

    Article  Google Scholar 

  • Hirose, N., I. Fukumori, V. Zlotnicki and R. M. Ponte (2001): Modeling the highfrequency barotropic response of the ocean to atmospheric disturbances: Sensitivity to forcing, topography, and friction. J. Geophys. Res., 106, 30,987–30,995.

    Article  Google Scholar 

  • Hughes, C. W., P. L. Woodworth, M. P. Meredith, V. Stepanov, T. Whitworth and A. R. Pyne (2003): Coherence of Antarctic sea levels, Southern Hemisphere Annular Mode, and flow through Drake Passage. Geophys. Res. Lett., 30, 1464, doi:10.1029/2003GL017240.

    Article  Google Scholar 

  • Kidson, J. W. (1991): Intraseasonal variation in the Southern Hemisphere Circulation. J. Climate, 4, 939–953.

    Article  Google Scholar 

  • Kidson, J. W. (1999): Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalysis. J. Climate, 12, 2808–2830.

    Article  Google Scholar 

  • Kiladis, G. N. and K. C. Mo (1998): Interannual and intraseasonal variability in the Southern Hemisphere. Meteor. Monogr., 49, Amer. Meteor. Soc., 307–336.

    Google Scholar 

  • Koblinsky, C. J. (1990): The global distribution of f/H and the barotropic response of the ocean. J. Geophys. Res., 95, 3213–3218.

    Article  Google Scholar 

  • Kubota, M., N. Iwasaka, S. Kizu, M. Konda and K. Kutsuwada (2002): Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO). J. Oceanogr., 58, 213–225.

    Article  Google Scholar 

  • Kusahara, K. (2007): Dynamics of the wind-driven sea level variation around Antarctica. Ph.D. thesis, Graduate School of Environmental Earth Science, Hokkaido University, 51 pp.

  • Kutsuwada, K. (1998): Impact of wind/wind-stress field in the North Pacific constructed by ADEOS/NSCAT data. J. Oceanogr., 54, 443–456.

    Article  Google Scholar 

  • Large, W. G. and S. Pond (1981): Open ocean momentum flux measurements in oderate to strong winds. J. Phys. Oceanogr., 11, 324–336.

    Article  Google Scholar 

  • Madden, R. A. and P. R. Julian (1971): Detection of 40–50 day oscillation in the zonal wind. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • Meredith, M. P. and C. W. Hughes (2004): On the wind-forcing of bottom pressure at Amsterdam and Kerguelen islands, southern Indian Ocean. J. Geophys. Res., 109, C03012, doi:10.1029/2003JC002060.

    Article  Google Scholar 

  • Meredith, M. P., P. L. Woodworth, C. W. Hughes and V. Stepanov (2004): Changes in the ocean transport through Drake Passage during the 1980s and 1990s, forced by changes in the Southern Annular Mode. Geophys. Res. Lett., 31, L21305, doi:10.1029/2004GL021169.

    Article  Google Scholar 

  • Metz, W. (1991): Optimal relationship of large-scale flow pattern and the barotropic feedback due to high-frequency eddies. J. Atmos. Sci., 9, 1141–1159.

    Article  Google Scholar 

  • Mo, K. (2000): Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 3599–3610.

    Article  Google Scholar 

  • Mo, K. and M. Ghil (1987): Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877–901.

    Article  Google Scholar 

  • North, G. R., T. L. Bell, R. F. Cahalan and F. J. Moeng (1982): Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706.

    Article  Google Scholar 

  • Thompson, D. W. J. and J. M. Wallace (2000): Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016.

    Article  Google Scholar 

  • Vivier, F., K. A. Kelly and M. Harismendy (2005): Causes of large-scale sea level variations in the Southern Ocean: Analysis of sea level and a barotropic model. J. Geophys. Res., 110, C09014, doi:10.1029/2004JC002773.

    Article  Google Scholar 

  • Webb, D. J. and B. A. de Cuevas (2002a): An ocean resonance in the southeast Pacific. Geophys. Res. Lett., 29(8), 1252, doi:10.1029/2001GL014259.

    Article  Google Scholar 

  • Webb, D. J. and B. A. de Cuevas (2002b): An ocean resonance in the Indian sector of the Southern Ocean. Geophys. Res. Lett., 29(14), 1664, doi:10.1029/2002GL015270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Iijima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iijima, Y., Aoki, S. & Kutsuwada, K. The Southern Annular Mode and opposite-phased Basin Mode of the Southern Ocean circulation. J Oceanogr 65, 53–60 (2009). https://doi.org/10.1007/s10872-009-0005-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-009-0005-0

Keywords

Navigation