Skip to main content

Advertisement

Log in

Millennium scale environment changes of the Okhotsk Sea during last 80 kyr and their phase relationship with global climate changes

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The paper presents the records of several paleoproductivity proxies (PP) (biogenic opal and Ba (Si_bio, Ba_bio), organic carbon (C_org) and carbonate Ca_carb, chlorin and benthic foraminifera abundance (BFA)) in sediments of the Okhotsk Sea for the last 80 kyr with a resolution of ∼100–300 years. The sediment age model was based on the AMS 14C data, records of benthic foraminifera δ18O, paleointensity of the Earth’s geomagnetic field and magnetic susceptibility. PP values demonstrate series of severe prolonged productivity drops in the Okhotsk Sea followed by a sharp increase during the last glaciation. On the basis of quantitative estimations of the paleoproductivity in the Okhotsk Sea during the cold MIS 2 and warm Holocene (Gorbarenko and Goldberg, 2005), it is suggested that the millennium scale relationship in productivity-climate changes of this basin was similar: an increase in the sea’s productivity was related with regional climate warming and vice-versa. The PP records of productivity/climate oscillations in the Okhotsk Sea during MIS 2–4 occurred contemporaneously with the North Atlantic cold Heinrich events (HE) and Greenland Dansgaard-Oyeshger interstadial (DOI). Observed successions of prolonged climate cooling events followed by rapid, abrupt warming are similar to climate and environmental oscillations in the N. Atlantic and Greenland, that confirms the millennium-scale climate changes synchronicities in the Northern Hemisphere including the far NW Pacific, the hydrology and climate conditions of which are close to those of the Okhotsk Sea. Synchronism of the N. Hemisphere severe cooling (including the Okhotsk Sea) with the Antarctic warming suggests that mechanisms of the “seesaw” effect (Blunier and Brook, 2001) in the low latitude heat redistribution between high latitudes of both hemispheres were more complicated than direct NADW formation forcing and encompasses the global atmospheric reorganization. Within the PP used a closer connection in the Okhotsk Sea millennium oscillations was observed for the C_org, BFA and chlorin; Ba_bio increases more closely to DOI. Si_bio variability does not show any evident correlation with productivity changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley, R. B. and P. U. Clark (1999): The deglaciation of the Northern hemisphere: a global perspective. Ann. Rev. Earth Planet. Sci., 27, 149–182, doi:10.1146/annurev.earth.27.1.149.

    Article  Google Scholar 

  • Bard, E. (1998): Geochemical and geophysical implications of the radiocarbon calibration. Geochim. Cosmochim. Acta, 62, 2025–2038.

    Article  Google Scholar 

  • Bard, E., B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure and F. Rougerie (1996): Deglacial sea-level record from Tahiti corals and timing of the global meltwater discharge. Nature, 382, 241–244.

    Article  Google Scholar 

  • Berger, W. H. (1970): Planktonic foraminifera: Selective solution and lysocline. Mar. Geol., 8, 111–138.

    Article  Google Scholar 

  • Bernhard, J. M., B. K. Sen Gupta and P. F. Borne (1997): Benthic foraminiferal proxy to estimate dysoxic bottom-water oxygen concentrations: Santa Barbara Basin. U.S. Pacific continental margin. J. Foram. Res., 27, 301–310.

    Article  Google Scholar 

  • Bernstein, R. E., P. R. Betzer, R. A. Feely, R. H. Byrne, A. F. Lamb and A. F. Michaels (1987): Acantharian fluxes and strontium to chlorinity ratios in the North Pacific ocean. Science, 237, 1490–1494.

    Article  Google Scholar 

  • Bernstein, R. E., R. H. Byrne, P. R. Betzer and A. M. Gerco (1992): Morphologies and transformations of celestite in seawater: the role of acantharians in strontium and barium geochemistry. Geochim. Cosmochim. Acta, 65, 3273–3279.

    Article  Google Scholar 

  • Bishop, J. K.B. (1988): The barite-opal-organic carbon association in oceanic particulate matter. Nature, 331, 341–343.

    Article  Google Scholar 

  • Blunier, T. and E. J. Brook (2001): Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109–112.

    Article  Google Scholar 

  • Bond, G., W. Broecker, S. Johnson, J. McManus, L. Labeyrie, J. Jouzel and G. Bonani (1993): Correlation between climate records from North Atlantic sediments and Greenland ice. Nature, 365, 143–147.

    Article  Google Scholar 

  • Bond, G., W. Showers, M. Elliot, M. Evans, R. Lotti, I. Hajdas, G. Bonani and S. Johnson (1999): The North Atlantic’s 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/ Oeschger cycles and the little ice age. p. 35–58. In Mechanisms of Global Climate Change at Millenial Time Scale, ed. by P. U. Clark, R. S. Webb and L. D. Keigwin, AGU Geophysical Monograph, 112, American Geophysical Union, Washington, D.C.

    Chapter  Google Scholar 

  • Broecker, W. S. (1998): Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography, 13, 119–121.

    Article  Google Scholar 

  • Broecker, W. S. (2003): Does the trigger for abrupt climate change reside in the ocean or in the atmosphere? Science, 300, 1519–1522.

    Article  Google Scholar 

  • Cane, M. and A. C. Clement (1999): p. 373–383. In Mechanisms of Global Climate Change at Millennial Time Scales, ed. by P. U. Clark, R. S. Webb and L. D. Keigwin, AGU Geophysical Monograph, 112, American Geophysical Union, Washington, D.C.

    Chapter  Google Scholar 

  • Cannariato, K. G., J. P. Kennett and R. J. Behl (1999): Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: Ecological and evolutionary implications. Geology, 27, 63–66.

    Article  Google Scholar 

  • Chow, T. J. and E. D. Goldberg (1960): On the marine geochemistry of barium. Geochim. Cosmochim. Acta, 20, 192.

    Article  Google Scholar 

  • Church, T. M. and K. Wolgemuth (1972): Marine barite saturation. Earth Planet. Sci. Lett., 15, 35–44.

    Article  Google Scholar 

  • Dansgaard, W., S. J. Johnson, H. B. Claussen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Hvidberg, D. Steffensen, A. E. Sveinbjornsdottir, J. Jouzel and G. Bond (1993): Evidence of general instability of past climate from a 250 kyr ice-core record. Nature, 364, 218–220.

    Article  Google Scholar 

  • Dehairs, F., R. Chesselet and J. Jedwab (1980): Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet. Sci. Lett., 49, 528–550.

    Article  Google Scholar 

  • Dehairs, F., N. Stroobants and L. Goeyens (1991): Suspended barite as a tracer of biological activity in the southern Ocean. Mar. Chem., 35, 399–410.

    Article  Google Scholar 

  • Dehairs, F., W. Baeyems and L. Goeyens (1992): Accumulation of suspended barite in mesopelagic depths and export production in the Southern Ocean. Science, 258, 1332–1335.

    Article  Google Scholar 

  • Dokken, T. M. and E. Jansen (1999): Rapid changes in the mechanism of ocean convection during the last glacial period. Nature, 401, 458–461.

    Article  Google Scholar 

  • Dymond, J. and R. Collier (1996): Particulate barium fluxes and their relationships to biological productivity. Deep-Sea Res. II, 43(4-6), 1283–1308.

    Article  Google Scholar 

  • Dymond, J., E. Suess and M. Lyle (1992): Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleocenography, 7, 163–181.

    Article  Google Scholar 

  • Evolution of Landscapes and Climate of the Northern Eurasia. Late Pleistocene-Holocene Elements of Prognosis (1993): I. Regional Paleogeography, ed. by A. A. Velichko, Nauka, Moscow, 102 pp. (in Russian).

    Google Scholar 

  • Farrel, J. W. and W. L. Prell (1991): Pacific CaCO3 preservation and δ18O since 4 Ma: paleoceanic and paleoclimatic implication. Paleoceanography, 5, 485–498.

    Article  Google Scholar 

  • Goldberg, E. L., S. A. Gorbarenko, A. D. Shaporenko, A. A. Bosin, V. Yu. Leskov and E P. Chebykin (2005a): Instability of last Glacial climate from SRXFA data for bottom sediments in the Okhotsk Sea. Nucl. Instr. & Methods in Physical Research A, 543, 284–287.

    Article  Google Scholar 

  • Goldberg, E. L., S. A. Gorbarenko, A. D. Shaporenko, M. A. Phedorin, A. V. Artemova, A. A. Bosin and K. V. Zolotarev (2005b): SRXFA for element composition of bottom sediments from the Okhotsk Sea. Nucl. Instr. & Methods in Physical Research A, 543, 280–283.

    Article  Google Scholar 

  • Goni, M. A., K. C. Ruttenberg and T. I. Eeglington (1988): A reassessment of the sources and importance of land-derived organic matter in surface sediments of the Gulf of Mexico. Geochim. Cosmochim. Acta, 62, 3055–3075.

    Article  Google Scholar 

  • Gorbarenko, S. A. (1996): Stable isotope and lithological evidence of late-glacial and Holocene oceanography of the Northwestern Pacific and its marginal seas. Quat. Res., 46, 230–250.

    Article  Google Scholar 

  • Gorbarenko, S. A. and A. V. Artemova (2003): Chronostratigraphy of the upper-Quaternary sediments in the northwestern Pacific and Bering Sea, paleoenvironmental and productivity changes. Tikhookeanskaya Geologiya, 22(5), 23–38 (in Russian).

    Google Scholar 

  • Gorbarenko, S. A. and E. L. Goldberg (2005): Assessment of variations of primary production in the Sea of Okhotsk, Bering Sea, and Northwestern Pacific over the Last Glaciation Maximum and Holocene. Doklady Earth Sciences, 405, 1380–1383, translation from Doklady Academii Nauk, 405, 673–676.

    Google Scholar 

  • Gorbarenko, S. A., M. P. Chekhovskaya and J. R. Southon (1998): Detailed environmental changes of the Okhotsdk Sea central part during last glaciation-Holocene. Okeanologiya, 38, 305–308 (in Russian).

    Google Scholar 

  • Gorbarenko, S. A., D. Nuernberg, A. N. Derkachev, A. S. Astakhov, J. R. Southon and A. Kaiser (2002): Magnetostratigraphy and tephrochronology of the upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply. Mar. Geol., 183, 107–129.

    Article  Google Scholar 

  • Gorbarenko, S. A., J. R. Southon, L. D. Keigwin, M. V. Cherepanova and I. G. Gvozdeva (2004): Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 209(1–4), 281–301.

    Article  Google Scholar 

  • Gorbarenko, S. A., I. A. Basov, M. P. Chekhovskaya and J. R. Southon (2005): Orbital and millennium scale environmental changes in the southern Bering Sea during last glacial-Holocene: geochemical and paleontological evidences. Deep-Sea Res. II, Bering Sea Paleoceanography, Special Volume, 52(16–18), 2174–2185.

    Article  Google Scholar 

  • Harris, P. G. and J. R. Maxwell (1995): A novel method for the rapid determination of chlorin concentrations at high stratigraphic resolution in marine sediments. Org. Geochem., 23(9), 853–856.

    Article  Google Scholar 

  • Harris, P. G., M. Zhao, Rosell-Mele, R. Tiedemann, M. Sarnthein and J. R. Maxell (1996): Chlorin accumulaion rate as a proxy for Quaternary marine primary productivity. Nature, 383, 63–65.

    Article  Google Scholar 

  • Haug, G. H., M. A Maslin, M. Sarnthein, R. Stax and R. Tiedemann (1995): Evolution of northwestern Pacific sedimentation patterns since 6 MA (site 882), 145, 293–314. In Proceeding of the Ocean Drilling Program, Scientific Results, ed. by D. K. Rea, I. A. Basov, D. W. Scholl and J. F. Allan, College Station, TX (Ocean Drilling Program).

  • Heinrich, H. (1988): Origin and consequences of cyclic ice rafted in the Northeast Atlantic ocean during the past 130000 years. Quat. Res., 29, 142–152.

    Article  Google Scholar 

  • Hendy, I. L., J. P. Kennett, E. B. Roark and B. L. Ingram (2002): Apparent synchroneity of submillennial scale climate events between Greenland and Santa Barbara Basin, California from 30-10 ka. Quat. Sci. Rev., 21, 1167–1184.

    Article  Google Scholar 

  • Higginson, M. J., J. R. Maxwell and M. A. Altabet (2003): Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: remote vs. local forcing of millennial-and orbital-scale variability. Mar. Geol., 201, 223–250.

    Article  Google Scholar 

  • Imbrie, J., A. Berger, E. A. Boule, S. C. Clemens, A. Duffy, W. R. Howard, G. Kukla, J. Kutzbach, D. G. Martinson, A. Mcintyre, A. C. Mix, B. Molfino, J. J. Morley, L. C. Peterson, N. G. Pisias, W. L. Prell, M. E. Raymo, N. J. Shackleton and J. R. Toggweiler (1993): On the structure and origin of major glaciation cycles: 2. The 100,000-year cycle. Paleoceanography, 8, 699–735.

    Article  Google Scholar 

  • Johnsen, S. J., D. Dahl-Jensen, N. Gundestrup, J. P. Steffensen, H. B. Clausen, H. Miller, V. Masson-Delmotte, A. E. Sveinbjornsdottir and J. White (2001): Oxygen isotope and paleotemperature records from six Greenland ice core stations: Camp Centure, Dye-3, GRIP, GISP, Renland and North GRIP. J. Quat. Sci., 16, 299–307.

    Article  Google Scholar 

  • Keigwin, L. D. (1998): Glacial-age hydrology of the far northwest Pacific ocean. Paleoceanography, 13, 323–339.

    Article  Google Scholar 

  • Keigwin, L. D., G. A. Jones and P. N. Froelich (1992): A 15000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific. Earth Planet. Sci. Lett., 111, 425–440.

    Article  Google Scholar 

  • Kiefer, T., M. Sarnthein, H. Erlenkeiseuser, P. M. Grootes and A. F. Roberts (2001): North Pacific response to milennialscale changes in ocean circulation over the last 60 kyr. Paleoceanography, 16, 179–189.

    Article  Google Scholar 

  • Laj, C., C. Kissel, A. Mazaud, J. E. T. Channell and J. Beer (2000): North Atlantic paleointensity stack since 75 ka (NAPIS-75) and duration of the Laschamp event. Phil. Trans. R. Soc. Lond., A, 358, 1009–1025.

    Article  Google Scholar 

  • Martinson, D. G., N. G. Pisias, J. D. Hays, J. Imbrie, T. C. Moore and N. J. Shackleton (1987): Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300000-year chronostratigraphy. Quat. Res., 27, 1–29.

    Article  Google Scholar 

  • Mayewski, P. A., L. D. Meeker, M. S. Twicker, S. I. Whitlow, O. Yang, W. B. Lyons and M. Prentice (1997): Major features and forcing of high latitude northern hemisphere atmospheric circulation over the last 110,000 years. J. Geophys. Res., 102(C12), 26,345–26,366.

    Article  Google Scholar 

  • McManus, J., W. M. Berelson, G. P. Klinkhammer, T. E. Kilgore and D. E. Hammond (1994): Remobilization of barium in continental margin sediments. Geochim. Cosmochim. Acta, 58, 4899–4907.

    Article  Google Scholar 

  • Moodley, L., G. J. Van der Zwaan, G. M. W. Rutten, R. C. E. Boom and L. Kempers (1998): Subsurface activity of benthic foraminifera in relation to porewater oxygen content: laboratory experiments. Mar. Micropaleontol., 34, 91–106.

    Article  Google Scholar 

  • Mortlock, R. A. and N. F. Froelich (1989): A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res., 36(9), 1415–1426.

    Article  Google Scholar 

  • Muller, P. J. and E. Suess (1979): Productivity, sedimentation rate, and sedimentary organic matter in oceans—I. Organic carbon preservation. Deep-Sea Res., 26A, 1347–1362.

    Article  Google Scholar 

  • Narita, H., M. Sato, S. Tsunogai, M. Murayama, M. Ikehara, T. Nakatsuka, M. Wakatsuchi, N. Harada and Y. Ujiie (2002): Biogenic opal indicating less productivity northwestern North Pacific during the glacial ages. Geophys. Res. Lett., 29(15), doi:10.1029/2001GL014320.

    Article  Google Scholar 

  • Nuernberg, D. and R. Tiedermann (2004): Environmental change in the Sea of Okhotsk over the past 1.1 million years—atmospheric teleconnections to China. Paleoceanography, 19, PA4011, doi:10.1029/ 2004PA001023.

  • O’Brien, S. R., P. A. Mayewski, L. D. Meeker, D. A. Meese, M. S. Twickler and S. I. Whitlow (1995): Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270, 1962–1964.

    Article  Google Scholar 

  • Okazaki, Y., K. Takahashi, T. Itaki and Y. Kawahata (2004): Comparison of radiolarian vertical distributions in the Okhotsk Sea near the Kuril Islands and in the northwestern Pacific off Hokkaido Island. Mar. Micropaleontol., 51, 257–284.

    Article  Google Scholar 

  • Ono, A., K. Takahashi, K. Katsuki, Y. Okazaki and T. Sakamoto (2005): The Dansgaard-Oescher cycles discovered in the up stream source region of the North Pacific Intermediate Water formation. Geophys. Res. Lett., 32(1–4), L11607, doi:10.1029/2004GL02260.

  • Pflaumann, U., J. Duprat, C. Pujol and L. D. Labeyrie (1966): SIMMAX: a modern analog technique to deduce Atlantic Sea Surface Temperatures from planktonic foraminifera in deep sea sediments. Paleoceanography, 11, 15–35.

    Article  Google Scholar 

  • Psheneva, O. J., Ye. D. Ivanova and S. A. Gorbarenko (2005): Benthic foraminifera as indicator of the fast late quaternary climatic changes in the Okhotsk Sea (core LV 28-40-5). Proceeding of VII International Interdisciplinary Scientific Symposium and International Geoscience Programme IGCP-476, Russian Academy of Science Far Eastern Branch, V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, 424–425.

    Google Scholar 

  • Rahmstorf, S. (2002): Ocean circulation and climate during the past 120,000 years. Nature, 419, 207–214.

    Article  Google Scholar 

  • Rohling, E. J., P. A. Mayewski and P. Challenor (2003): On timing and mechanism of millennial-scale climate variability during the last glacial cycle. Clim. Dyn., 20, 257–267, doi:10.1007/s00382-002-0266-4.

    Article  Google Scholar 

  • Romankevich, E. A. (1977): Organic Matter Geochemistry in Ocean. Publ. Nauka, Moscow, 256 pp. (in Russian).

    Google Scholar 

  • Rushdi, A. I., J. McManus and R. W. Collier (2000): Marine barite and celestite saturation in seawater. Mar. Chem., 69, 19–31.

    Article  Google Scholar 

  • Saidova, Kh. M. (1961): Ecology of Foraminifera and Paleogeography of the USSR Far-eastern Seas and Northwestern Pacific. Nauka, Moscow, 229 pp. (in Russian).

    Google Scholar 

  • Sakamoto, T., M. Ikehara, K. Aoki, K. Jijima, N. Kimura, T. Nakatsuka and M. Wakatsuchi (2005): Ice-rafted debris (IRD)—based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea. Deep-Sea Res. II, 52, 2275–2301.

    Article  Google Scholar 

  • Sarnthein, M., K. Winn, J.-C. Duplessy and M. R. Fortugne (1988): Global variations of surface ocean productivity in low and mid latitude: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000years. Paleoceanography, 3, 361–399.

    Article  Google Scholar 

  • Sato, M., H. Narita and S. Tsunogai (2002): Barium increasing prior to opal during the last termination of glacial ages in the Okhotsk Sea sediments. J. Oceanogr., 58, 461–467.

    Article  Google Scholar 

  • Sen Gupta, B. K. and M. L. Machain-Castillo (1993): Benthic foraminifera in oxygen-poor habitats. Mar. Micropaleontol., 20, 183–201.

    Article  Google Scholar 

  • Shackleton, N. J., R. G. Fairbanks, T.-c. Chiu and F. Parrenin (2004): Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C. Quat. Sci. Rev., 23, 1513–1522.

    Article  Google Scholar 

  • Streeter, S. S. and N. J. Shackleton (1979): Paleocirculation of the deep North Atlantic: 150,000 year record of benthic foraminifera and oxygen-18. Science, 203, 168–171.

    Article  Google Scholar 

  • Stuiver, M., P. Grootes and T. F. Braziunas (1995): The GISP δ18O climate record of the past 16500 years and the role of the Sun, ocean, and volcanoes. Quat. Res., 44, 341–354.

    Article  Google Scholar 

  • Tada, R., T. Irino and I. Koizumi (1999): Land-ocean linkages over orbital and millennial timescales cycles recorded in late Quaternary sediments of the Japan Sea. Paleoceanography, 14, 236–247.

    Article  Google Scholar 

  • Talley, L. D. (1991): An Okhotsk sea water anomaly: implications for ventilation in the North Pacific. Deep-Sea Res. Part A, 38, 171–190.

    Article  Google Scholar 

  • The Diatoms of the USSR; Fossil and Recent (1974): 1, Publishing House “Nauka”, Leningrad branch, Leningrad, 403 pp.

    Google Scholar 

  • The Greenland Summit Ice Core [CD-ROM] (1997): ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2

  • Voelker, A. H. L. and Workshop Participants (2002): Global distribution of centennial-scale records for marine isotope stage (MIS) 3: a database. Quat. Sci. Rev., 21, 1185–1214.

    Article  Google Scholar 

  • Wang, Y. J., H. Cheng, R. L. Edwards, Z. S. An, J. Y. Wu, C.-C. Shen and J. A. Dorale (2001): A high-resolution absolute-dated late Pleistocene monsoon records from Hulu Cave, China. Science, 294, 2345–2348.

    Article  Google Scholar 

  • Zakharkov, S. P., T. Yu. Orlova, N. S. Vanin, E. A. Shtrakhert and N. Biebow (2001): Phytoplankton in north-east part of the Okhotsk Sea in spring 1998. Okeanologiya, 41, 711–718 (in Russian).

    Google Scholar 

  • Zakharkov, S. P., A. A. Bosin and S. A. Gorbarenko (2007): Chlorin content in sea sediments as an indication of sea primary productivity. Vestnik Dal’nevostochnogo otdeleniay RAN, 131, 52–58 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Alexandrovich Gorbarenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbarenko, S.A., Goldberg, E.L., Kashgarian, M. et al. Millennium scale environment changes of the Okhotsk Sea during last 80 kyr and their phase relationship with global climate changes. J Oceanogr 63, 609–623 (2007). https://doi.org/10.1007/s10872-007-0054-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-007-0054-1

Keywords

Navigation