Skip to main content
Log in

Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Great theoretical and methodological advances are pushing the limits of resolution and sensitivity in solid state NMR (SSNMR). However, sample preparation remains a critical issue for the success of an experiment. The factors affecting spectral quality in SSNMR samples are discussed, examining cases encountered in the literature and presenting new experimental data. A discussion on resolution and sensitivity in sedimented solutes is framed in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. This value is calculated by comparing the Direct Polarization signal intensity of the present sample to the same spectrum of a sample comprising of 6 mg of lyophilized ubiquitin, rehydrated to 400 mg/ml with a glycerol/water mixture. A concentration value of 833 mg/ml can be calculated under the assumption that conc = (ρsol − ρsolv)/(1 − ρsolvprot) (Chatelier and Minton 1987).

References

  • Akbey Ü, Franks T, Linden A, Lange S, Griffin RG, van Rossum B-J, Oschkinat H (2010a) Dynamic nuclear polarization of deuterated proteins. Angew Chem Int Ed 49:7803–7806

    Google Scholar 

  • Akbey Ü, Lange S, Franks WT, Linser R, Rehbein K, Diehl A, van Rossum BJ, Reif B, Oschkinat H (2010b) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73

    Google Scholar 

  • Allen PJ, Creuzet F, de Groot HJM, Griffin RG (1991) Apparatus for low-temperature magic-angle spinning NMR. J Magn Reson 92:614–617

    ADS  Google Scholar 

  • Andersson KM, Hovmoller S (2000) The protein content in crystals and packing coefficients in different space groups. Acta Crystallogr D Biol Crystallogr 56:789–790

    Google Scholar 

  • Asami S, Szekely K, Schanda P, Meier BH, Reif B (2012) Optimal degree of protonation for (1)H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency. J Biomol NMR 54:155–168

    Google Scholar 

  • Auger M, McDermott AE, Robinson V, Castelhano AL, Billedeau RJ, Pliura DH, Krantz A, Griffin RG (1993) Solid-state carbon-13 NMR study of a transglutaminase-inhibitor adduct. Biochemistry 32:3930–3934

    Google Scholar 

  • Balayssac S, Bertini I, Falber K, Fragai M, Jehle S, Lelli M, Luchinat C, Oschkinat H, Yeo KJ (2007) Solid-state NMR of matrix metalloproteinase 12: an approach complementary to solution NMR. ChemBioChem 8:486–489

    Google Scholar 

  • Baldwin AJ, Walsh P, Hansen DF, Hilton GR, Benesch JLP, Sharpe S, Kay LE (2012) Probing dynamic conformations of the high-molecular-weight αB-crystallin heat shock protein ensemble by NMR spectroscopy. J Am Chem Soc 134:15343–15350

    Google Scholar 

  • Banci L, Bencini A, Bertini I, Luchinat C, Piccioli M (1990) 1H NOE and ligand field studies of copper-cobalt superoxide dismutase with anions. Inorg Chem 29:4867–4873

    Google Scholar 

  • Banci L, Bertini I, Girotto S, Martinelli M, Vieru M, Whitelegge J, Durazo A, Valentine JS (2007) Metal-free SOD1 forms amyloid-like oligomers: a possible general mechanism for familial ALS. Proc Natl Acad Sci USA 104:11263–11267

    ADS  Google Scholar 

  • Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, Vieru M (2008) SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization. PLoS One 3:e1677

    ADS  Google Scholar 

  • Barbet-Massin E, Pell AJ, Knight MJ, Webber AL, Felli IC, Pierattelli R, Emsley L, Lesage A, Pintacuda G (2013) 13C-detected through-bond correlation experiments for protein resonance assignment by ultra-fast MAS NMR. ChemPhysChem. doi:10.1002/cphc.201201097

  • Barnes AB, De Paëpe G, Van der Wel PCA, Hu K-N, Joo C-G, Bajaj VS, Mak-Jurkauskas ML, Sirigiri JR, Herzfeld J, Temkin RJ, Griffin RG (2008) High-field dynamic nuclear polarization for solid and solution biological NMR. Appl Magn Reson 34:237–263

    Google Scholar 

  • Barnes AB, Mak-Jurkauskas ML, Matsuki Y, Bajaj VS, Van der Wel PCA, DeRocher R, Bryant J, Sirigiri JR, Temkin RJ, Lugtenburg J, Herzfeld J, Griffin RG (2009) Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. J Magn Reson 198:261–270

    ADS  Google Scholar 

  • Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay MM, Maas W, Dobson CM, Griffin RG (2011) Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J Am Chem Soc 133:13967–13974

    Google Scholar 

  • Benvenuti M, Mangani S (2007) Crystallisation of soluble proteins in vapour diffusion for X-ray crystallography. Nat Protoc 2:1633–1651

    Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2001) Solution NMR of paramagnetic molecules. Elsevier, Amsterdam

    Google Scholar 

  • Bertini I, Bhaumik A, De Paepe G, Griffin RG, Lelli M, Lewandowski JR, Luchinat C (2010) High-resolution solid-state NMR structure of a 17.6 kDa protein. J Am Chem Soc 132:1032–1040

    Google Scholar 

  • Bertini I, Gonnelli L, Luchinat C, Mao J, Nesi A (2011a) A new structural model Aß40 fibrils. J Am Chem Soc 133:16013–16022

    Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011b) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108:10396–10399

    ADS  Google Scholar 

  • Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E (2012a) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54:123–127

    Google Scholar 

  • Bertini I, Engelke F, Luchinat C, Parigi G, Ravera E, Rosa C, Turano P (2012b) NMR properties of sedimented solutes. Phys Chem Chem Phys 14:439–447

    Google Scholar 

  • Bertini I, Gallo G, Korsak M, Luchinat C, Mao J, Ravera E (2013a) Formation kinetics and structural features of beta-amyloid aggregates by sedimented solute NMR. ChemBioChem. doi:10.1002/cbic.201300141

  • Bertini I, Luchinat C, Parigi G, Ravera E (2013b) SedNMR: on the edge between solution and solid state NMR. Acc Chem Res. doi:10.1021/ar300342f

  • Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327

    Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    ADS  Google Scholar 

  • Chatelier RC, Minton AP (1987) Sedimentation equilibrium in macromolecular solutions of arbitrary concentration. I. Self-associating proteins. Biopolymers 26:507–524

    Google Scholar 

  • Cole HBR, Torchia DA (1991) An NMR study of the backbone dynamics of staphylococcal nuclease in the crystalline state. Chem Phys 158:271–281

    ADS  Google Scholar 

  • Concistre M, Johannessen OG, Carignani E, Geppi M, Levitt M (2013) Magic-angle spinning NMR of cold samples. Acc Chem Res. doi:10.1021/ar300323c

  • Corzilius B, Smith AA, Barnes AB, Luchinat C, Bertini I, Griffin RG (2011) High-filed dynamic nuclear polarization with high spin transition metal ions. J Am Chem Soc 133:5648–5651

    Google Scholar 

  • Corzilius B, Smith AA, Griffin RG (2012) Solid effect in magic angle spinning dynamic nuclear polarization. J Chem Phys 173:054201

    ADS  Google Scholar 

  • Cross TA, Opella SJ (1983) Protein structure by solid-state NMR. J Am Chem Soc 105:306–308

    Google Scholar 

  • de la Torre JG, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730

    Google Scholar 

  • Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010) Magic angle spinning NMR analysis of beta(2)-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 132:10414–10423

    Google Scholar 

  • Denisov VP, Venu K, Peters J, Horlein HD, Halle B (1997) Orientational disorder and entropy of water in protein cavities. J Phys Chem B 101:9380–9389

    Google Scholar 

  • Diakova G, Goddard YA, Korb J-P, Bryant RG (2010) Water and backbone dynamics in a hydrated protein. Biophys J 98:138–146

    Google Scholar 

  • Doucette PA, Whitson LJ, Cao X, Schirf V, Demeler B, Valentine JS, Hansen JC, Hart PJ (2004) Dissociation of human copper-zinc superoxide dismutase dimers using chaotrope and reductant. Insights into the molecular basis for dimer stability. J Biol Chem 279:54558–54566

    Google Scholar 

  • Franks WT, van Rossum B-J, Bardiaux B, Ravera E, Parigi G, Luchinat C, Oschkinat H (2012) In: Bertini I, McGreevy KS, Parigi G (eds) NMR of biomolecules: towards mechanistic systems biology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 376–392

  • Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Ed 51:7855–7858

    Google Scholar 

  • Gelis I, Vitzthum V, Dhimole N, Caporini MA, Schedlbauer A, Carnevale D, Connell SR, Fucini P, Bodenhausen G (2013) Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J Biomol NMR 56:85–93

    Google Scholar 

  • Goddard YA, Korb J-P, Bryant RG (2009) Water molecule contributions to proton spin-lattice relaxation in rotationally immobilized proteins. J Magn Reson 199:68–74

    ADS  Google Scholar 

  • Ha Y, Shi D, Small GW, Theil EC, Allewell NM (1999) Crystal structure of bullfrog M ferritin at 2.8 Å resolution: analysis of subunit interactions and the binuclear metal center. J Biol Inorg Chem 4:243–256

    Google Scholar 

  • Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG (1997) Polarizarion-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930–932

    Google Scholar 

  • Harbison GS, Smith SO, Pardoen JA, Courtin JML, Lugtenburg J, Herzfeld J, Mathies RA, Griffin RG (1985) Solid-state carbon-13 NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin. Biochemistry 24:6955–6962

    Google Scholar 

  • Havlin RH, Tycko R (2005) Probing site-specific conformational distributions in protein folding with solid-state NMR. Proc Natl Acad Sci USA 102:3284–3289

    ADS  Google Scholar 

  • Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P (2011) Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR 49:75–84

    Google Scholar 

  • Hills BP (1992) The proton exchange cross-relaxation model of water relaxation in biopolymer systems. Mol Phys 76:489–508

    ADS  Google Scholar 

  • Hu KN, Yu HH, Swager TM, Griffin RG (2004) Dynamic nuclear polarization with biradicals. J Am Chem Soc 126:10844–10845

    Google Scholar 

  • Hu K-N, Bajaj VS, Rosay M, Griffin RG (2007) High-frequency dynamic nuclear polarization using mixtures of TEMPO and trityl radicals. J Chem Phys 126:44512-1–44512-7

    Google Scholar 

  • Hu K-N, Yau W-M, Tycko R (2010) Detection of a transient intermediate in a rapid protein folding process by solid-state nuclear magnetic resonance. J Am Chem Soc 132:24–25

    Google Scholar 

  • Huang TH, Bachovchin WW, Griffin RG, Dobson CM (1984) High-resolution nitrogen-15 nuclear magnetic resonance studies of α-lytic protease in solid state. Direct comparison of enzyme structure in solution and solid states. Biochemistry 23:5933–5937

    Google Scholar 

  • Huang K-Y, Amodeo GA, Tong L, McDermott AE (2011) The structure of human ubiquitin in 2-methyl-2,4-pentanediol: a new conformational switch. Protein Sci 20:630–639

    Google Scholar 

  • Igumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ (2004a) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126:6720–6727

    Google Scholar 

  • Igumenova TI, Wand AJ, McDermott AE (2004b) Assignment of the backbone resonances for microcrystalline ubiquitin. J Am Chem Soc 126:5323–5331

    Google Scholar 

  • Ivins FJ, Montgomery MG, Smith SJM, Morris-Davies AC, Taylor IA, Rittinger K (2009) NEMO oligomerization and its ubiquitin-binding properties. Biochem J 421:243–251

    Google Scholar 

  • Jakeman DL, Mitchell DJ, Shuttleworth WA, Evans JNS (1998) Effects of sample preparation conditions on biomolecular solid-state NMR lineshapes. J Biomol NMR 12:417–421

    Google Scholar 

  • Kantardjieff KA, Rupp B (2003) Matthews coefficient probabilities: improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12:1865–1871

    Google Scholar 

  • Keniry MA, Rothgeb TM, Smith RL, Gutowsky HS, Oldfield E (1983) NMR studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amino acid and in crystalline sperm whale (Physeter catodon) myoglobin. Biochemistry 22:1917–1926

    Google Scholar 

  • Kiihne S, Bryant RG (2000) Protein-bound water molecule counting by resolution of 1H spin-lattice relaxation mechanisms. Biophys J 78:2163–2169

    Google Scholar 

  • Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Emsley L, Lesage A, Hermann T, Pintacuda G (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid state MAS NMR spectroscopy. Angew Chem Int Ed 50:11697–11701

    Google Scholar 

  • Knight MJ, Felli IC, Pierattelli R, Bertini I, Emsley L, Hermann T, Pintacuda G (2012a) Rapid measurement of pseudocontact shifts in metalloproteins by proton-detected solid-state NMR spectroscopy. J Am Chem Soc 134:14730–14733

    Google Scholar 

  • Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Hermann T, Emsley L, Pintacuda G (2012b) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109:11095–11100

    ADS  Google Scholar 

  • Knight MJ, Felli IC, Pierattelli R, Emsley L, Pintacuda G (2013) Magic angle spinning NMR of paramagnetic proteins. Acc Chem Res. doi:10.1021/ar300349y

  • Laage S, Marchetti A, Sein J, Pierattelli R, Sass HJ, Grzesiek S, Lesage A, Pintacuda G, Emsley L (2008) Band-selective 1H–13C cross-polarization in fast MAS solid-state NMR spectroscopy. J Am Chem Soc 130:17216–17217

    Google Scholar 

  • Laage S, Lesage A, Emsley L, Bertini I, Felli IC, Pierattelli R, Pintacuda G (2009a) Transverse-dephasing optimized homonuclear J-decoupling in solid-state NMR spectroscopy of uniformly 13C-labeled proteins. J Am Chem Soc 131:10816–10817

    Google Scholar 

  • Laage S, Sachleben J, Steuernagel S, Pierattelli R, Pintacuda G, Emsley L (2009b) Fast acquisition of multi-dimensional spectra in solid-state NMR enabled by ultra-fast MAS. J Magn Reson 196:133–141

    ADS  Google Scholar 

  • Lee AL, Wand AJ (1999) Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation. J Biomol NMR 13:101–112

    Google Scholar 

  • Lewandowski JR, Sein J, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2010) Measurement of site-specific 13C spin-lattice relaxation in a crystalline protein. J Am Chem Soc 132:8252–8254

    Google Scholar 

  • Lewandowski JR, Dumez JN, Akbey Ü, Franks WT, Emsley L, Oschkinat H (2011a) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211

    Google Scholar 

  • Lewandowski JR, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2011b) Site-specific measurement of slow motions in proteins. J Am Chem Soc 133:16762–16765

    Google Scholar 

  • Lewandowski JR, Van der Wel PCA, Rigney M, Grigorieff N, Griffin RG (2011c) Structural complexity of a composite amyloid fibril. J Am Chem Soc 133:14686–14698

    Google Scholar 

  • Libralesso E, Nerinovski K, Parigi G, Turano P (2005) 1H nuclear magnetic relaxation dispersion of Cu, Zn superoxide dismutase in the native and guanidinium-induced unfolded forms. Biochem Biophys Res Commun 328:633–639

    Google Scholar 

  • Linden AH, Franks WT, Akbey Ü, Lange S, van Rossum B-J, Oschkinat H (2011) Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR 51:283–292

    Google Scholar 

  • Liu Z, Zhang W-P, Xing Q, Ren X, Liu M, Tang C (2012) Noncovalent dimerization of ubiquitin. Angew Chem Int Ed 51:469–472

    Google Scholar 

  • Loquet A, Giller K, Becker S, Lange A (2010) Supramolecular interactions probed by (13)C-(13)C solid-state NMR spectroscopy. J Am Chem Soc 132:15164–15166

    Google Scholar 

  • Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A (2012) Atomic model of the type III secretion system needle. Nature 486:276–279

    ADS  Google Scholar 

  • Loquet A, Habenstein B, Lange A (2013) Structural investigations of molecular machines by solid-state NMR. Acc Chem Res. doi:10.1021/ar300320p

  • Luchinat C, Parigi G, Ravera E, Rinaldelli M (2012) Solid state NMR crystallography through paramagnetic restraints. J Am Chem Soc 134:5006–5009

    Google Scholar 

  • Luchinat C, Parigi G, Ravera E (2013) Water and protein dynamics in sedimented systems: a relaxometric investigation. Chem Phys Chem. doi:10.1002/cphc.201300167

  • Lundh S (1980) Concentrated protein solutions in the analytical ultracentrifuge. J Polym Sci Polym Phys Ed 18:1963–1978

    Google Scholar 

  • Lundh S (1985) Ultacentrifugation of concentrated biopolymer solutions and effect of ascorbate. Arch Biochem Biophys 241:265–274

    Google Scholar 

  • Lv G, Kumar A, Giller K, Orcellet ML, Riedel D, Fernandez CO, Becker S, Lange A (2012) Structural comparison of mouse and human α-synuclein amyloid fibrils by solid-state NMR. J Mol Biol 420:99–111

    Google Scholar 

  • Mainz A, Jehle S, van Rossum BJ, Oschkinat H, Reif B (2009) Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J Am Chem Soc 131:15968–15969

    Google Scholar 

  • Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B (2012) Structural and mechanistic implications of metal-binding in the small heat-shock protein αB-crystallin. J Biol Chem 287:1128–1138

    Google Scholar 

  • Margiolaki I, Wright JP, Wilmanns M, Fitch AN, Pinotsis N (2007) Second SH3 domain of ponsin solved from powder diffraction. J Am Chem Soc 129:11865–11871

    Google Scholar 

  • Martin RW, Zilm KW (2003) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165:162–174

    ADS  Google Scholar 

  • Matsuki Y, Maly T, Ouari O, Karoui H, Le Moigne F, Rizzato E, Lyubenova S, Herzfeld J, Prisner TF, Tordo P, Griffin RG (2009) Dynamic nuclear polarization with a rigid biradical. Angew Chem Int Ed 121:5096–5100

    Google Scholar 

  • McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    MathSciNet  Google Scholar 

  • McDermott AE, Polenova T, Böckmann A, Zilm KW, Paulsen EK, Martin RW, Montelione GT (2000) Partial NMR assignments for uniformly (13C, 15N)-enriched BPTI in the solid state. J Biomol NMR 16:209–219

    Google Scholar 

  • Minton AP (2007) The effective hard particle model provides a simple, robust, and broadly applicable description of nonideal behavior in concentrated solutions of bovine serum albumin and other nonassociating proteins. J Pharm Sci 96:3466–3469

    Google Scholar 

  • Murray DT, Das N, Cross TA (2013) Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res. doi:10.1021/ar3003442

  • Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG (2013) High frequency dynamic nuclear polarization. Acc Chem Res. doi:10.1021/ar300348n

  • Paravastu AK, Leapman RD, Yau WM, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA 105:18349–18354

    ADS  Google Scholar 

  • Pauli J, van Rossum B, Forster H, de Groot HJ, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143:411–416

    ADS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    ADS  Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1972) Proton-enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. J Chem Phys 56:1776–1777

    ADS  Google Scholar 

  • Qiang W, Yau W-M, Luo Y, Mattson MP, Tycko R (2012) Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. Proc Natl Acad Sci USA 109:4443–4448

    ADS  Google Scholar 

  • Ravera E, Corzilius B, Michaelis VK, Rosa C, Griffin RG, Luchinat C, Bertini I (2013a) Dynamic nuclear polarization of sedimented solutes. J Am Chem Soc 135:1641–1644

    Google Scholar 

  • Ravera E, Parigi G, Mainz A, Religa TL, Reif B, Luchinat C (2013b) Experimental determination of microsecond reorientation correlation times in protein solutions. J Phys Chem B 117:3548–3553

    Google Scholar 

  • Rivas G, Minton AP (2011) Beyond the second virial coefficient: sedimentation equilibrium in highly non-ideal solutions. Methods 54:167–174

    Google Scholar 

  • Rothgeb TM, Oldfield E (1981) Nuclear magnetic resonance of heme protein crystals. General aspects. J Biol Chem 256:1432–1446

    Google Scholar 

  • Salager E, Stein RS, Steuernagel S, Lesage A, Elena B, Emsley L (2009) Enhanced sensitivity in high-resolution 1H solid-state NMR spectroscopy with DUMBO dipolar decoupling under ultra-fastMAS. Chem Phys Lett 469:336–341

    ADS  Google Scholar 

  • Seidel K, Etzkorn M, Heise H, Becker S, Baldus M (2005) High-resolution solid-state NMR studies on uniformly [13C,15N]-labeled ubiquitin. ChemBioChem 6:1638–1647

    Google Scholar 

  • Sengupta I, Nadaud PS, Jaroniec CP (2013) Protein structure determination with paramagnetic solid-state NMR spectroscopy. Acc Chem Res. doi:10.1021/ar300360q

  • Sheng Y, Chattopadhyay M, Whitelegge JP, Valentine JS (2012) SOD1 aggregation and ALS: role of metallation states and disulfide status. Curr Top Med Chem 12:2560–2572

    Google Scholar 

  • Siemer AB, McDermott AE (2008) Solid-state NMR on a type III antifreeze protein in the presence of ice. J Am Chem Soc 130:17394–17399

    Google Scholar 

  • Siemer AB, Huang K-Y, McDermott AE (2012) Protein linewidth and solvent dynamics in froze solution NMR. PLoS One 7:e47242

    ADS  Google Scholar 

  • Smith SO, Farr-Jones S, Griffin RG, Bachovchin WW (1989) Crystal versus solution structures of enzymes: NMR spectroscopy of a crystalline serine protease. Science 244:961–964

    ADS  Google Scholar 

  • Thurber KR, Tycko R (2008) Biomolecular solid state NMR with magic-angle spinning at 25 K. J Magn Reson 195:179–186

    ADS  Google Scholar 

  • Thurber KR, Tycko R (2009) Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder. J Magn Reson 196:84–87

    ADS  Google Scholar 

  • Turano P, Lalli D, Felli IC, Theil EC, Bertini I (2010) NMR reveals a pathway for iron mineral precursors to the central cavity of ferritin. Proc Natl Acad Sci USA 107:545–550

    ADS  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:10–20

    Google Scholar 

  • Tycko R (2013) NMR at Low and Ultralow Temperatures. Acc Chem Res. doi:10.1021/ar300358z

  • Van der Wel PC, Hu KN, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128:10840–10846

    Google Scholar 

  • Van der Wel PC, Lewandowski JR, Griffin RG (2007) Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. J Am Chem Soc 129:5117–5130

    Google Scholar 

  • Venturi L, Woodward N, Hibberd D, Marighedo N, Gravelle A, Ferrante G, Hills BP (2008) Multidimensional cross-correlation relaxometry of aqueous protein systems. Appl Magn Reson 33:213–234

    Google Scholar 

  • Venu K, Denisov VP, Halle B (1997) Water 1H magnetic relaxation dispersion in protein solutions. A quantitative assessment of internal hydration, proton exchange, and cross-relaxation. J Am Chem Soc 119:3122–3134

    Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    ADS  Google Scholar 

  • Webber AL, Pell AJ, Barbet-Massin E, Knight MJ, Bertini I, Felli IC, Pierattelli R, Emsley L, Lesage A, Pintacuda G (2012) Combination of DQ and ZQ coherences for sensitive through-bond NMR correlation experiments in biosolids under ultra-fast MAS. ChemPhysChem 13:2405–2411

    Google Scholar 

  • Weis V, Griffin RG (2006) Electron-nuclear cross polarization. Solid State Nucl Magn Reson 29:66–78

    Google Scholar 

  • Yan S, Suiter CL, Hou G, Zhang H, Polenova T (2013) Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy. Acc Chem Res. doi:10.1021/ar300309s

Download references

Acknowledgments

Discussions with Lyndon Emsley, Moreno Lelli, Guido Pintacuda and Robert G. Griffin on resolution in SSNMR and with Vito Calderone on crystallization conditions are acknowledged. This work has been supported by Ente Cassa di Risparmio di Firenze, the European Commission (contract Bio-NMR no. 261863), and Instruct, part of the European Strategy Forum on Research Infrastructures (ESFRI) and supported by national member subscriptions. Specifically, we thank the EU ESFRI Instruct Core Centre CERM, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Luchinat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fragai, M., Luchinat, C., Parigi, G. et al. Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. J Biomol NMR 57, 155–166 (2013). https://doi.org/10.1007/s10858-013-9776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9776-0

Keywords

Navigation