Skip to main content
Log in

Influence of 3D porous galactose containing PVA/gelatin hydrogel scaffolds on three-dimensional spheroidal morphology of hepatocytes

  • Tissue Engineering Constructs and Cell Substrates
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Three-dimensional liver scaffolds are temporary framework that mimics native ECM architecture and positively influence hepatocyte lodging, proliferation with retention of metabolic activities. The aim of the current study is to develop galactose containing physical cross-linked polyvinyl alcohol/gelatin (P/G 8:2 and 9:1) hydrogel scaffolds via freeze/thaw technique. The 8:2 and 9:1 P/G hydrogels exhibited comparable pore size and porosity (P > 0.05). The tensile strength of the fabricated 8:2 and 9:1 P/G hydrogel scaffolds were found to be in accordance with native human liver. Pore interconnectivity of both the P/G hydrogel scaffolds was confirmed by scanning electron micrographs and liquid displacement method. Further galactose containing hydrogel promoted cell–cell and cell-hydrogel interaction, aiding cellular aggregation leading to spheroids formation compared to void P/G hydrogel by 7 days. Hence, galactose containing P/G hydrogel could be more promising substrate as it showed significantly higher cell proliferation and albumin secretion for 21 days when compared to non-galactose P/G hydrogels (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vasanthan KS, Subramanian A, Krishnan UM, Sethuraman S. Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering. Biotechnol Adv. 2012;30:742–52.

    Article  Google Scholar 

  2. Chao YC, Ying L, Zhang PC, Zhuo RX, Kang ET, Leong KW, Ma HQ. High density of immobilized galactose ligand enhances hepatocyte attachment and function. J Biomed Mater Res A. 2003;67:1093–104.

    Google Scholar 

  3. Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T. Galactose–carrying polymers as extracellular matrices for liver tissue engineering. Biomaterials. 2006;2:576–85.

    Article  Google Scholar 

  4. Yang SM, Lee DH, Park JH. Effects of degree of cell-cell contact on liver specific functions of rat primary hepatocytes. Biotechnol Bioprocess Eng. 2000;5:99–105.

    Article  Google Scholar 

  5. Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond). 2010;5:469–84.

    Article  Google Scholar 

  6. Kim M, Lee JY, Jones CN, Revzin A, Tae G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 2010;31:3596–603.

    Article  Google Scholar 

  7. Hwang CM, Sant S, Masaeli M, Kachouie NN, Zamanian B, Lee SH, Khademhosseini A. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication. 2010;2:035003–24.

    Article  Google Scholar 

  8. Hago EE, Li X. Interpenetrating polymer network hydrogels based on gelatin and PVA by biocompatible approaches: synthesis and characterization. Adv Mater Sci Eng. 2013;2013:1–8.

    Article  Google Scholar 

  9. Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999;13:1883–900.

    Google Scholar 

  10. Blum MM, Ovaert TC. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding. J Mech Behav Biomed Mater. 2012;14:248–58.

    Article  Google Scholar 

  11. Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater. 2011;4:1228–33.

    Article  Google Scholar 

  12. Oe S, Fukunaka Y, Hirose T, Yamaoka Y, Tabata Y. A trial on regeneration therapy of rat liver cirrhosis by controlled release of hepatocyte growth factor. J Control Release. 2003;88:193–200.

    Article  Google Scholar 

  13. Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Chang J, Liu F, Lin F, Wu R, Zhang R, Lu Q. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng. 2006;12:83–90.

    Article  Google Scholar 

  14. Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, Cho CS. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials. 2002;23:2827–34.

    Article  Google Scholar 

  15. Ambury RF, Merry CLR, Ulijn RV. Sugar functionalised PEGA surfaces support metabolically active hepatocytes. J Mater Chem. 2011;21:2901–8.

    Article  Google Scholar 

  16. Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials. 2011;32:7042–52.

    Article  Google Scholar 

  17. Breslow JL, Sloan HR, Ferrans VJ, Anderson JL, Levy RI. Characterization of the mouse liver cell lineFL83B. Exp Cell Res. 1973;78:441–53.

    Article  Google Scholar 

  18. Yin C, Liao K, Mao HQ, Leong KW, Zhuo RX, Chan V. Adhesion contact dynamics of HepG2 cells on galactose immobilized substrates. Biomaterials. 2003;24:837–50.

    Article  Google Scholar 

  19. van de Kerkhove MP, Hoekdtra R, Chamuleau RA, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg. 2004;240:216–30.

    Article  Google Scholar 

  20. Chamuleau RA. Future of bioartificial liver support. World J Gastrointest Surg. 2009;30:21–5.

    Article  Google Scholar 

  21. Zhao LF, Pan XP, Li LJ. Key challenges to the development of extracorporeal bioartificial liver support systems. Hepatobiliary Pancreat Dis Int. 2012;11:243–9.

    Article  Google Scholar 

  22. Stockmann HB, Hiemstra CA, Marquet RL, IJzermans JN. Extracorporeal perfusion for the treatment of acute liver failure. Ann Surg. 2000;231:460–70.

    Article  Google Scholar 

  23. Subramanian A, Krishnan UM, Sethuraman S. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed Mater. 2011;6:25004–14.

    Article  Google Scholar 

  24. Sankaran K, Vasanthan KS, Krishnan UM, Sethuraman S. Development & evaluation of axially aligned nanofibres for blood vessel tissue engineering. J Tissue Eng Regen Med. 2012; doi:10.1002/term.1566.

    Google Scholar 

  25. Sethuraman S, Nair LS, El-Amin S, Nguyen MT, Singh A, Greish YE, Allcock HR, Brown PW, Laurencin CT. Development and characterization of biodegradable nanocomposite injectables for orthopaedic applications based on polyphosphazenes. J Biomater Sci Polym Ed. 2011;22:733–52.

    Article  Google Scholar 

  26. Kuppan P, Vasanthan KS, Sundaramurthi D, Krishnan UM, Sethuraman S. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibres for skin tissue engineering: effects of topography, mechanical and chemical stimuli. Biomacromolecules. 2011;12:3156–65.

    Article  Google Scholar 

  27. Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30:2956–65.

    Article  Google Scholar 

  28. Liu Y, Geever LM, Kennedy JE, Higginbotham CL, Cahill PA, McGuinness GB. Thermal behavior and mechanical properties of physically crosslinked PVA/gelatin hydrogels. J Mech Behav Biomed Mater. 2010;3:203–9.

    Article  Google Scholar 

  29. Rault J, Neffati R, Judeinstein P. Melting of ice in porous glass: why water and solvents confined in small pores do not crystallize. Eur Phys J. 2003;36:627–37.

    Article  Google Scholar 

  30. Park KH. Improved long-term culture of hepatocytes in a hydrogel containing Arg-Gly-Asp (RGD). Biotechnol Lett. 2002;24:1131–5.

    Article  Google Scholar 

  31. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: introduction to materials in medicine. 2nd ed. New York: Academic Press; 2004.

    Google Scholar 

  32. Lanza RP, Langer R, Vacanti J. Principles of tissue engineering. San Diego: Academic Press; 2000.

    Google Scholar 

  33. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21:3307–29.

    Article  Google Scholar 

  34. Huang H, Oizumi S, Kojima N, Niino T, Sakai Y. Avidin-biotin binding based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials. 2007;28:3815–23.

    Article  Google Scholar 

  35. Markus JB. Multiscale aspects of mechanical properties of biological materials. J Mech Behav Biomed Mater. 2011;4:125–7.

    Article  Google Scholar 

  36. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400.

    Article  Google Scholar 

  37. Lozoya OA, Wauthier E, Turner RA, Barbier C, Prestwich GD, Guilak F, Superfine R, Lubkin SR, Reid LM. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials. 2011;32:7389–402.

    Article  Google Scholar 

  38. McKee CT, Last JA, Russell P, Murphy CJ. Tissue Eng Part B Rev. 2011;17:155–64.

    Article  Google Scholar 

  39. Zhao L, Chang J, Zhai W. Preparation and HL-7702 cell functionality of titania/chitosan composite scaffolds. J Mater Sci Mater Med. 2009;20:949–57.

    Article  Google Scholar 

  40. Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, Jun HW. Cell infiltration and growth in a low density, uncompressed three dimensional electrospun nanofibrous scaffold. Biomaterials. 2011;32:1583–90.

    Article  Google Scholar 

  41. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2003;24:4011–21.

    Article  Google Scholar 

  42. Meindl-Beinker NM, Dooley S. Transforming growth factor-β and hepatocyte transdifferentiation in liver fibrogenesis. J Gasteroenterol Hepatol. 2008;23:S122–7.

    Article  Google Scholar 

  43. Richter JR, de Guzman RC, Van Dyke ME. Mechanism of hepatocyte attachment to keratin biomaterials. Biomaterials. 2011;32:7555–61.

    Article  Google Scholar 

  44. Sanli O, Orhan E, Asman G. Release of salicylic acid through poly (vinyl alcohol/poly (vinyl pyrrolidone) and poly(vinyl alcohol-g-N-vinyl-2-pyrrolidone) membranes. J Appl Polym Sci. 2006;102:1244–53.

    Article  Google Scholar 

  45. Paul W, Sharma CP. Polyetherurethaneurea reinforced poly (vinyl alcohol) dialysis membranes-studies on permeability and mechanical strength. Bull Mater Sci. 1994;17:1065–70.

    Article  Google Scholar 

  46. Nakatsuka S, Andrady AL. Permeability of vitamin-B12 in chitosan membranes-effect of cross-linking and blending with poly(vinyl alcohol) on permeability. J Appl Polym Sci. 1992;44:17–28.

    Article  Google Scholar 

  47. Shearer H, Ellis MJ, Perera SP, Chaudhuri JB. Effects of common sterilization methods on the structure and properties of poly(dl lactic-co-glycolic acid) scaffolds. Tissue Eng. 2006;12:2717–27.

    Article  Google Scholar 

  48. Ricciardi R, Auriemma F, De Rosa C, Laupretre F. X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules. 2004;37:1921–7.

    Article  Google Scholar 

  49. Katz JS, Burdick JA. Hydrogel mediated delivery of trophic factors for neural repair. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:128–39.

    Article  Google Scholar 

  50. Chen JP, Cheng TH. Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer. 2009;50:107–16.

    Article  Google Scholar 

  51. Linh NTB, Min YK, Song HY, Lee BT. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J Biomed Mater Res B Appl Biomater. 2010;95:184–91.

    Article  Google Scholar 

  52. Vrana NE, O’Grady A, Kay E, Cahill PA, Mc Guinness B. Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med. 2009;3:567–72.

    Article  Google Scholar 

  53. Du Y, Chia SM, Han R, Chang S, Tang H, Yu H. 3D hepatocyte monolayer on hybrid RGD/galactose substratum. Biomaterials. 2006;27:5669–80.

    Article  Google Scholar 

  54. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubrue P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014;35:49–62.

    Article  Google Scholar 

  55. Murphy CM, O’Brien FJ. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes Migr. 2010;4:377–81.

    Article  Google Scholar 

  56. Wu Y, Zhao Z, Guan Y, Zhang Y. Galactosylated reversible hydrogels as scaffold for HepG2 spheroid generation. Acta Biomater. 2014;10:1965–74.

    Article  Google Scholar 

Download references

Acknowledgments

The author wish to acknowledge the Indian Council for Medical Research (35/22/2010-BMS), Nano Mission (SR/S5/NM-07/2006 & SR/NM/PG-16/2007) and FIST program (SR/FST/LSI-327/2007) of the Department of Science & Technology, Govt. of India for funding. Prof. T. R. Rajagopalan R & D Cell of SASTRA University is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaminathan Sethuraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanthan, K.S., Subramaniam, A., Krishnan, U.M. et al. Influence of 3D porous galactose containing PVA/gelatin hydrogel scaffolds on three-dimensional spheroidal morphology of hepatocytes. J Mater Sci: Mater Med 26, 20 (2015). https://doi.org/10.1007/s10856-014-5345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-014-5345-7

Keywords

Navigation