Skip to main content

Advertisement

Log in

Direct and interactive influence of explanatory variables on properties of a calcium phosphate cement for vertebral body augmentation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We used the response surface methodology to investigate the direct and interactive effects of three explanatory variables on three properties of a calcium phosphate cement (CPC) for use in vertebroplasty (VP) and balloon kyphoplasty (BKP). The variables were poly(ethylene glycol) content of the cement liquid (PEG), powder-to-liquid ratio (PLR), and the amount of Na2HPO4 added to an aqueous solution of 4 wt/wt% poly(acrylic acid) (as the cement liquid) (SPC). The properties were injectability (I), final setting time (F), and 5-day compressive strength (UCS). We found that (1) there was an interactive effect between the variables on I and F but not on UCS; (2) the maximum I (98 %) was obtained with PEG = 20 wt/wt% and PLR = 2 g mL−1; (3) F = 15 min (the proposed optimum value for a CPC for use in VP and BKP) was obtained with PEG = 4 wt/wt% and PLR = 2.9 g mL−1; and (4) the maximum UCS (39 MPa) was obtained with SPC = 0 and PLR = 3.5 g mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int. 2005;16:S3–7.

    Article  Google Scholar 

  2. Barrocas AM, Eskey CJ, Hirsch JA. Vertebral augmentation in osteoporotic fractures. Injury. 2007;38(S3):S88–96.

    Article  Google Scholar 

  3. Johnell O, Kanis JA. An estimate of the world wide prevalence and disability associated with osteoporotic fractures. Osteporos Int. 2006;17:1726–33.

    Article  Google Scholar 

  4. Trumees E. Osteoporosis. Spine. 2001;26:930–2.

    Article  Google Scholar 

  5. Lavelle W, Carl A, Lavelle ED, Khaleel MA. Vertebroplasty and kyphoplasty. Anesthesiol Clin. 2007;25:913–28.

    Article  Google Scholar 

  6. Nakano M, Hirano N, Zukawa M, Suzuki K, Hirose J, Kimura T, Kawaguchi Y. Vertebroplasty using calcium phosphate cement for osteoporotic vertebral fractures: study of outcomes at a minimum follow-up of two years. Asian Spine J. 2012;6:34–42.

    Article  Google Scholar 

  7. Kasperk C, Hillmeier J, Noldge G, Grafe IA, Da Fonseca K, Raupp D, Bardenheuer H, Libicher M, Liegibel UM, Sommer U, Hilscher U, Pyerin W, Vetter M, Meinzer H-P, Meeder P-J, Taylor RS, Nawroth P. Treatment of painful vertebral fractures by kyphoplasty in patients with primary osteoporosis; a prospective nonrandomized controlled study. J Bone Miner Res. 2005;20:604–12.

    Article  Google Scholar 

  8. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of the- art review. J Biomed Mater Res Part B. 2006;76B:456–68.

    Article  Google Scholar 

  9. Perez RA, Kim H-W, Ginebra M-P. Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng. 2012;3(1):2041731412439555.

    Article  Google Scholar 

  10. Takechi M, Miyamoto Y, Ishikawa K, Nagayama M, Kon M, Asaoka K, Suzuki K. Effects of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement. J Biomed Mater Res. 1998;39:308–16.

    Article  Google Scholar 

  11. Khairoun I, Boltong MG, Driessens FCM, Planell JA. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Med. 1998;9:425–8.

    Article  Google Scholar 

  12. Khairoun I, Boltong MG, Driessens FCM, Planell JA. Limited compliance of some apatitic calcium phosphate bone cements with clinical requirement. J Mater Sci Mater Med. 1998;9:667–71.

    Article  Google Scholar 

  13. Leroux L, Hatim Z, Freche M, Lacout JL. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone. 1999;25(Suppl 2):31S–4S.

    Article  Google Scholar 

  14. Chow LC, Hirayama S, Takagi S, Parry E. Diametral tensile strength and compressive strength of a calcium phosphate cement: effect of applied pressure. J Biomed Mater Res. 2000;53:511–7.

    Article  Google Scholar 

  15. Ginebra MP, Rilliard A, Fernandez E, Elvira C, Roman JS, Planell JA. Mechanical and rheological improvement of calcium phosphate cement by the addition of a polymeric drug. J Biomed Mater Res. 2001;57:113–8.

    Article  Google Scholar 

  16. Miyamoto Y, Toh T, Ishikawa K, Yuasa T, Nagayama M, Suzuki K. Effect of added NaHCO3 on the basic properties of apatite cement. J Biomed Mater Res. 2001;54:311–9.

    Article  Google Scholar 

  17. Fujishiro Y, Takahashi K, Sato T. Preparation and compressive strength of α-tricalcium phosphate/gelatin gel composite cement. J Biomed Mater Res. 2001;54:525–30.

    Article  Google Scholar 

  18. Ito A, Kawamura H, Miyakawa S, Layrolle P, Kanzaki N, Treboux G, Onuma K, Tsutsumi S. Resorbability and solubility of zinc-containing tricalcium phosphate. J Biomed Mater Res. 2002;60:224–31.

    Article  Google Scholar 

  19. Mickiewicz RA, Mayes AN, Knaack D. Polymer-calcium phosphate cement composites for bone substitutes. J Biomed Mater Res. 2002;61:581–92.

    Article  Google Scholar 

  20. Nilsson M, Fernandez E, Sarda S, Lidgren L, Planell JA. Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res. 2002;61:600–7.

    Article  Google Scholar 

  21. Sarda S, Fernandez E, Nilsson M, Balcells M, Planell JA. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res. 2002;61:653–9.

    Article  Google Scholar 

  22. Barralet JE, Gaunt T, Wright AJ, Gibson IR, Knowles JC. Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement. J Biomed Mater Res. 2002;63:1–9.

    Article  Google Scholar 

  23. dos Santos LA, Carrodeguas RG, Boschi AO, de Arruda ACF. Fiber-enriched double-setting calcium phosphate bone cement. J Biomed Mater Res. 2003;65A:244–50.

    Article  Google Scholar 

  24. Takechi M, Miyamoto Y, Momota Y, Yuasa T, Tatehara S, Nagayama M, Ishikawa K. Effects of various sterilization methods on the setting and mechanical properties of apatite cement. J Biomed Mater Res Part B. 2004;69B:58–63.

    Article  Google Scholar 

  25. Burguera EF, Guitian F, Chow LC. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement. J Biomed Mater Res. 2004;71A:275–82.

    Article  Google Scholar 

  26. Gbureck U, Barralet JE, Spatz K, Grover LM, Thull R. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials. 2004;25:2187–95.

    Article  Google Scholar 

  27. Barralet JE, Grover LM, Gbureck U. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement. Biomaterials. 2004;25:2197–203.

    Article  Google Scholar 

  28. Gbureck U, Spatz K, Thull R, Barralet JE. Rheological enhancement of mechanically activated α-tricalcium phosphate cements. J Biomed Mater Res Part B. 2005;73B:1–6.

    Article  Google Scholar 

  29. Bohner M, Baroud G. Injectabiltiy of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.

    Article  Google Scholar 

  30. Lin J, Zhang S, Chen T, Liu C, Lin S, Tian X. Calcium phosphate cement reinforced by polypeptide copolymers. J Biomed Mater Res Part B. 2006;76B:432–9.

    Article  Google Scholar 

  31. Burguera EF, Xu HHK, Weir MD. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J Biomed Mater Res Part B. 2006;77B:126–34.

    Article  Google Scholar 

  32. Vlad MD, Torres R, Lopez J, Barraco M, Moreno JA, Fernadez E. Does mixing affect the setting of injectable bone cement? An ultrasound study. J Mater Sci Mater Med. 2007;18:347–52.

    Article  Google Scholar 

  33. Burguera EF, Xu HHK, Sun L. Injectable calcium phosphate cement: effects of powder-to-liquid ratio and needle size. J Biomed Mater Res Part B. 2008;84B:493–502.

    Article  Google Scholar 

  34. Weir MD, Xu HHK. High-strength in situ-setting calcium phosphate composite with protein release. J Biomed Mater Res. 2008;85A:388–96.

    Article  Google Scholar 

  35. Burguera EF, Guitian F, Chow LC. Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement. J Biomed Mater Res. 2008;85A:674–83.

    Article  Google Scholar 

  36. Hesaraki S, Zamanian A, Moztarzadeh F. The influence of the acidic component of the gas-foaming porogen used in preparing an injectable porous calcium phosphate cement on its properties: acetic acid versus citric acid. J Biomed Mater Res Part B. 2008;86B:208–16.

    Article  Google Scholar 

  37. Habraken WJEM, de Jonge LT, Wolke JGC, Yubao L, Mikos AJ, Jansen JA. Introduction of gelatin microspheres into an injectable calcium phosphate cement. J Biomed Mater Res. 2008;87A:643–55.

    Article  Google Scholar 

  38. Alves HLR, dos Santos LA, Bergman CP. Injectability evaluation of tricalcium phosphate bone cement. J Mater Sci Mater Med. 2008;19:2241–6.

    Article  Google Scholar 

  39. Moreau JL, Weir MD, Xu HHK. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res. 2009;91A:605–13.

    Article  Google Scholar 

  40. Hoekstra JWM, van den Beuken JJJP, Leeuwenburgh SCG, Meijer GJ, Jansen JA. Tantalumpentoxide as a radiopacifier in injectable calcium phosphate cements for bone substitution. Tissue Eng Part C. 2011;17:907–13.

    Article  Google Scholar 

  41. Yin H, Li YG, Si M, Li JM. Simvastatin-loaded macroporous calcium phosphate cement: preparation, in vitro characterization, and evaluation of in vivo performance. J Biomed Mater Res Part A. 2012;100A:2991–3000.

    Article  Google Scholar 

  42. Gu T, Shi H, Ye J. Reinforcement of calcium phosphate cement by incorporating with high-strength β-tricalcium phosphate aggregates. J Biomed Mater Res Part B. 2012;100B:350–9.

    Article  Google Scholar 

  43. Alge DL, Goebel WS, Chu TMG. In vitro degradation and cytocompatiblity of dicalcium phosphate dehydrate cements prepared using the monocalcium phosphate monohydrate/hydroxyapatite system reveals rapid conversion to HA as a key mechanism. J Biomed Mater Res Part B. 2012;100B:595–602.

    Article  Google Scholar 

  44. Hesaraki S, Alizadeh M, Borhan S, Pourbaghi-Masouleh M. Polymerizable nanoparticulate silica-reinforced calcium phosphate bone cement. J Biomed Mater Res Part B. 2012;100B:1627–35.

    Article  Google Scholar 

  45. Lopez-Heredia MA, Pattipeilohy J, Hsu S, Grykien M, Weijden BVD, Leeuwenburgh SCG, Salmon P, Wolke JGC, Jansen JA. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications. J Biomed Mat Res Part A. 2013;101A:478–90.

    Article  Google Scholar 

  46. O’Hara RM, Dunne NJ, Orr JF, Buchanan FJ, Wilcox RK, Barton DC. Optimization of the mechanical and handling properties of an injectable calcium phosphate cement. J Mater Sci Mater Med. 2010;21:2299–305.

    Article  Google Scholar 

  47. Low KL, Tan SH, Zein SHS, McPhail DS, Boccaccini AR. Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. Mater Des. 2011;32:3312–9.

    Article  Google Scholar 

  48. Antony J. Design of experiments for engineers and scientists. Amsterdam: Elsevier; 2003.

    Google Scholar 

  49. Anderson-Clark C, Montgomery DC, Myers RH. Response surface methodology-process and product optimization using designed experiments. New York: Wiley; 2011.

    Google Scholar 

  50. American Society for Testing and Materials (ASTM). ASTM standard C266-08e1. Standard test method for time of setting of hydraulic-cement paste by Gillmore needles. ASTM Annual Book of Standards, vol. 04.01. West Conshohocken: ASTM International; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladius Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werdofa, D.M., Lewis, G. Direct and interactive influence of explanatory variables on properties of a calcium phosphate cement for vertebral body augmentation. J Mater Sci: Mater Med 25, 55–66 (2014). https://doi.org/10.1007/s10856-013-5051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5051-x

Keywords

Navigation