Skip to main content
Log in

A study of the diffusion characteristics of normal, delipidized and relipidized articular cartilage using magnetic resonance imaging

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper assesses the capacity to provide semipermeability of the synthetic layer of surface-active phospholipids created to replace the depleted surface amorphous layer of articular cartilage. The surfaces of articular cartilage specimens in normal, delipidized, and relipidized conditions following incubation in dipalmitoyl-phosphatidylcholine and palmitoyl-oleoyl-phosphatidylcholine components of the joint lipid mixture were characterized nanoscopically with the atomic force microscope and also imaged as deuterium oxide (D2O) diffused transiently through these surfaces in a magnetic resonance imaging enclosure. The MR images were then used to determine the apparent diffusion coefficients in a purpose-built MATLAB®-based algorithm. Our results revealed that all surfaces were permeable to D2O, but that there was a significant difference in the semipermeability of the surfaces under the different conditions, relative to the apparent diffusion coefficients. Based on the results and observations, it can be concluded that the synthetic lipid that is deposited to replace the depleted SAL of articular cartilage is capable of inducing some level of semipermeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schwarz IM, Hills BA. Surface-active phospholipid as the lubricating component of lubricin. Rheumatology. 1998;37(1):21.

    Article  CAS  Google Scholar 

  2. Kumar P, Oka M, Toguchida J, Kobayashi M, Uchida E, Nakamura T, et al. Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints. J Anat. 2001;199(3):241–50.

    Article  CAS  Google Scholar 

  3. Yusuf KQ, Motta N, Pawlak Z, Oloyede A. A microanalytical study of the surfaces of normal, delipidized, and artificially “resurfaced” articular cartilage. Connect Tissue Res. 2011;52(6):1–10. doi:10.3109/03008207.2011.630764.

    Google Scholar 

  4. McCutchen CW. The frictional properties of animal joints. Wear. 1962;5(1):1–17.

    Article  Google Scholar 

  5. Mow MC, Ling FF. On weeping lubrication theory. Zeitschrift für Angewandte Mathematik und Physik (ZAMP). 1969;20(2):156–66.

    Article  Google Scholar 

  6. Little T, Freeman MAR, Swanson SAV. Experiments on friction in the human hip joint. In: Wright V, editor. Lubrication and wear in Joints. London: Sector; 1969. p. 110.

    Google Scholar 

  7. Oloyede A, Broom N. The generalized consolidation of articular cartilage: an investigation of its near-physiological response to static load. Connective Tissue Res. 1994;31(1):75–86.

    Article  CAS  Google Scholar 

  8. Chen Y, Crawford RW, Oloyede A. Preliminary evaluation of the capacity of surface-active phospholipids to provide semipermeability in a saline filtration environment. Med Sci Monit. 2007;13(4):101–5.

    Google Scholar 

  9. Mauck RL, Hung CT, Ateshian GA. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng. 2003;125:602.

    Article  Google Scholar 

  10. Zhang L, Gardiner BS, Smith DW, Pivonka P, Grodzinsky A. The effect of cyclic deformation and solute binding on solute transport in cartilage. Arch Biochem Biophys. 2007;457(1):47–56.

    Article  CAS  Google Scholar 

  11. Hills B, Monds M. Deficiency of lubricating surfactant lining the articular surfaces of replaced hips and knees. Rheumatology. 1998;37(2):143.

    Article  CAS  Google Scholar 

  12. Oloyede A, Gudimetla P, Crawford R, Hills BA. Biomechanical responses of normal and delipidized articular cartilage subjected to varying rates of loading. Connective Tissue Res. 2004;45(2):86–93.

    Article  CAS  Google Scholar 

  13. Oloyede A, Gudimetla P, Crawford R, Hills BA. Consolidation responses of delipidized articular cartilage. Clin Biomech. 2004;19(5):534–42.

    Article  CAS  Google Scholar 

  14. Vecchio P, Thomas R, Hills BA. Surfactant treatment for osteoarthritis. Rheumatology. 1999;38(10):1020.

    Article  CAS  Google Scholar 

  15. Sarma AV, Powell GL, LaBerge M. Phospholipid composition of articular cartilage boundary lubricant. J Orthop Res. 2001;19(4):671–6.

    Article  CAS  Google Scholar 

  16. Ballantine GC, Stachowiak GW. The effects of lipid depletion on osteoarthritic wear. Wear. 2002;253(3–4):385–93.

    Article  CAS  Google Scholar 

  17. Oloyede A, Gudimetla P, Chen Y, Crawford R. In vitro reversal of the load-bearing properties of lipid-depleted articular cartilage following exposure to phospholipid surfactant solutions. Clin Biomech. 2008;23(9):1200–8.

    Article  CAS  Google Scholar 

  18. Yusuf K, Gudimetla P, Pawlak Z, Oloyede A. Preliminary characterisation of the surface of cartilage following exposure to saturated and unsaturated synthetic lipids. In: The First International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing. Brisbane: Queensland University of Technology; 2011. p. 347–51.

  19. Flachsmann R, Kim W, Broom N. Vulnerability to rupture of the intact articular surface with respect to age and proximity to site of fibrillation: a dynamic and static-investigation. Connect Tissue Res. 2005;46(3):159–69.

    Article  CAS  Google Scholar 

  20. Pawlak Z, Crawford R, Oloyede A. Hypothetical model of hydrophilic lubrication in synovial joints. Aust J Mech Eng. 2008;6(1):21.

    Google Scholar 

  21. Pawlak Z, Oloyede A. Conceptualisation of articular cartilage as a giant reverse micelle: a hypothetical mechanism for joint biocushioning and lubrication. Biosystems. 2008;94(3):193–201.

    Article  CAS  Google Scholar 

  22. Fick DA. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical. Mag J Sci. 1855;10(63):30–9.

    Google Scholar 

  23. Crank J. The mathematics of diffusion. 2nd ed. Oxford: Clarendon Press; 1975.

    Google Scholar 

  24. Burstein D, Gray ML, Hartman AL, Gipe R, Foy BD. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res. 1993;11(4):465–78.

    Article  CAS  Google Scholar 

  25. Kokkonen H, Mäkelä J, Kulmala K, Rieppo L, Jurvelin J, Tiitu V, et al. Computed tomography detects changes in contrast agent diffusion after collagen cross-linking typical to natural aging of articular cartilage. Osteoarthr Cartil. 2011;19(10):1190–8.

    Article  CAS  Google Scholar 

  26. Bihan DL. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed. 1995;8(7):375–86.

    Article  Google Scholar 

  27. Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.

    CAS  Google Scholar 

  28. Gudimetla P, Crawford R, Oloyede A. The influence of lipid-extraction method on the stiffness of articular cartilage. Clin Biomech. 2007;22(8):924–31.

    Article  CAS  Google Scholar 

  29. Gale LR, Chen Y, Hills BA, Crawford R. Boundary lubrication of joints: characterization of surface-active phospholipids found on retrieved implants. Acta Orthop. 2007;78(3):309–14.

    Article  Google Scholar 

  30. Chen Y, Crawford RW, Oloyede A. Unsaturated phosphatidylcholines lining on the surface of cartilage and its possible physiological roles. J Orthop Surg Res. 2007;2(1):1–6.

    Article  Google Scholar 

  31. Jurvelin JS, Müller DJ, Wong M, Studer D, Engel A, Hunziker EB. Surface and subsurface morphology of bovine humeral articular cartilage as assessed by atomic force and transmission electron microscopy. J Struct Biol. 1996;117(1):45–54.

    Article  CAS  Google Scholar 

  32. De Visser SK, Bowden JC, Wentrup-Byrne E, Rintoul L, Bostrom T, Pope JM, et al. Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements1. Osteoarthr Cartil. 2008;16(6):689–97.

    Article  Google Scholar 

  33. Hills BA. Oligolamellar nature of the articular surface. Rheumatology. 1990;17(3):349.

    CAS  Google Scholar 

  34. Maroudas A. Physicochemical properties of cartilage in the light of ion exchange theory. Biophys J. 1968;8(5):575–95.

    Article  CAS  Google Scholar 

  35. Leddy HA, Guilak F. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann Biomed Eng. 2003;31(7):753–60.

    Article  Google Scholar 

  36. Glenister TW. An embryological view of cartilage. J Anat. 1976;122:323–30.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oloyede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yusuf, K.Q., Momot, K.I., Wellard, R.M. et al. A study of the diffusion characteristics of normal, delipidized and relipidized articular cartilage using magnetic resonance imaging. J Mater Sci: Mater Med 24, 1005–1013 (2013). https://doi.org/10.1007/s10856-013-4858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4858-9

Keywords

Navigation